- class langgraph_agent_toolkit.agents.blueprints.knowledge_base_agent.agent.AgentState[source][source]
Bases:
MessagesState
State for Knowledge Base agent.
- __init__(*args, **kwargs)
- clear() None. Remove all items from D.
- copy() a shallow copy of D
- classmethod fromkeys(iterable, value=None, /)
Create a new dictionary with keys from iterable and values set to value.
- get(key, default=None, /)
Return the value for key if key is in the dictionary, else default.
- items() a set-like object providing a view on D's items
- keys() a set-like object providing a view on D's keys
- pop(k[, d]) v, remove specified key and return the corresponding value.
If the key is not found, return the default if given; otherwise, raise a KeyError.
- popitem()
Remove and return a (key, value) pair as a 2-tuple.
Pairs are returned in LIFO (last-in, first-out) order. Raises KeyError if the dict is empty.
- setdefault(key, default=None, /)
Insert key with a value of default if key is not in the dictionary.
Return the value for key if key is in the dictionary, else default.
- update([E, ]**F) None. Update D from dict/iterable E and F.
If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present and lacks a .keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]
- values() an object providing a view on D's values
- messages: _add_messages at 0x7f79ec099e40>]
- langgraph_agent_toolkit.agents.blueprints.knowledge_base_agent.agent.get_kb_retriever()[source][source]
Create and return a Knowledge Base retriever instance.
- langgraph_agent_toolkit.agents.blueprints.knowledge_base_agent.agent.wrap_model(model)[source][source]
Wrap the model with a system prompt for the Knowledge Base agent.
- Parameters:
model (BaseChatModel)
- Return type:
RunnableSerializable[AgentState, AIMessage]
- async langgraph_agent_toolkit.agents.blueprints.knowledge_base_agent.agent.retrieve_documents(state, config)[source][source]
Retrieve relevant documents from the knowledge base.
- Parameters:
state (AgentState)
config (RunnableConfig)
- Return type:
- async langgraph_agent_toolkit.agents.blueprints.knowledge_base_agent.agent.prepare_augmented_prompt(state, config)[source][source]
Prepare a prompt augmented with retrieved document content.
- Parameters:
state (AgentState)
config (RunnableConfig)
- Return type:
- async langgraph_agent_toolkit.agents.blueprints.knowledge_base_agent.agent.acall_model(state, config)[source][source]
Generate a response based on the retrieved documents.
- Parameters:
state (AgentState)
config (RunnableConfig)
- Return type: