- class langgraph_agent_toolkit.core.settings.Settings(_case_sensitive=None, _nested_model_default_partial_update=None, _env_prefix=None, _env_file=PosixPath('.'), _env_file_encoding=None, _env_ignore_empty=None, _env_nested_delimiter=None, _env_nested_max_split=None, _env_parse_none_str=None, _env_parse_enums=None, _cli_prog_name=None, _cli_parse_args=None, _cli_settings_source=None, _cli_parse_none_str=None, _cli_hide_none_type=None, _cli_avoid_json=None, _cli_enforce_required=None, _cli_use_class_docs_for_groups=None, _cli_exit_on_error=None, _cli_prefix=None, _cli_flag_prefix_char=None, _cli_implicit_flags=None, _cli_ignore_unknown_args=None, _cli_kebab_case=None, _cli_shortcuts=None, _secrets_dir=None, *, ENV_MODE=None, HOST='0.0.0.0', PORT=8080, AUTH_SECRET=None, USE_FAKE_MODEL=False, OPENAI_API_KEY=None, OPENAI_API_BASE_URL=None, OPENAI_API_VERSION=None, OPENAI_MODEL_NAME=None, AZURE_OPENAI_API_KEY=None, AZURE_OPENAI_ENDPOINT=None, AZURE_OPENAI_API_VERSION=None, AZURE_OPENAI_MODEL_NAME=None, AZURE_OPENAI_DEPLOYMENT_NAME=None, ANTHROPIC_MODEL_NAME=None, ANTHROPIC_API_KEY=None, GOOGLE_VERTEXAI_MODEL_NAME=None, GOOGLE_VERTEXAI_API_KEY=None, GOOGLE_GENAI_MODEL_NAME=None, GOOGLE_GENAI_API_KEY=None, AWS_BEDROCK_MODEL_NAME=None, DEEPSEEK_MODEL_NAME=None, DEEPSEEK_API_KEY=None, OLLAMA_MODEL_NAME=None, OLLAMA_BASE_URL=None, OBSERVABILITY_BACKEND=None, AGENT_PATHS=['langgraph_agent_toolkit.agents.blueprints.react.agent:react_agent', 'langgraph_agent_toolkit.agents.blueprints.chatbot.agent:chatbot_agent', 'langgraph_agent_toolkit.agents.blueprints.react_so.agent:react_agent_so'], LANGCHAIN_TRACING_V2=False, LANGCHAIN_PROJECT='default', LANGCHAIN_ENDPOINT='https://api.smith.langchain.com', LANGCHAIN_API_KEY=None, LANGFUSE_SECRET_KEY=None, LANGFUSE_PUBLIC_KEY=None, LANGFUSE_HOST='https://cloud.langfuse.com', MEMORY_BACKEND=MemoryBackends.SQLITE, SQLITE_DB_PATH='checkpoints.db', POSTGRES_USER=None, POSTGRES_PASSWORD=None, POSTGRES_HOST=None, POSTGRES_PORT=None, POSTGRES_DB=None, POSTGRES_POOL_SIZE=200, POSTGRES_MIN_SIZE=10, POSTGRES_MAX_IDLE=300, MODEL_CONFIGS=<factory>)[source][source]
Bases:
BaseSettings
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- Parameters:
_case_sensitive (bool | None)
_nested_model_default_partial_update (bool | None)
_env_prefix (str | None)
_env_file (DotenvType | None)
_env_file_encoding (str | None)
_env_ignore_empty (bool | None)
_env_nested_delimiter (str | None)
_env_nested_max_split (int | None)
_env_parse_none_str (str | None)
_env_parse_enums (bool | None)
_cli_prog_name (str | None)
_cli_settings_source (CliSettingsSource[Any] | None)
_cli_parse_none_str (str | None)
_cli_hide_none_type (bool | None)
_cli_avoid_json (bool | None)
_cli_enforce_required (bool | None)
_cli_use_class_docs_for_groups (bool | None)
_cli_exit_on_error (bool | None)
_cli_prefix (str | None)
_cli_flag_prefix_char (str | None)
_cli_implicit_flags (bool | None)
_cli_ignore_unknown_args (bool | None)
_cli_kebab_case (bool | None)
_secrets_dir (PathType | None)
ENV_MODE (str | None)
HOST (str)
PORT (int)
AUTH_SECRET (SecretStr | None)
USE_FAKE_MODEL (bool)
OPENAI_API_KEY (SecretStr | None)
OPENAI_API_BASE_URL (str | None)
OPENAI_API_VERSION (str | None)
OPENAI_MODEL_NAME (str | None)
AZURE_OPENAI_API_KEY (SecretStr | None)
AZURE_OPENAI_ENDPOINT (str | None)
AZURE_OPENAI_API_VERSION (str | None)
AZURE_OPENAI_MODEL_NAME (str | None)
AZURE_OPENAI_DEPLOYMENT_NAME (str | None)
ANTHROPIC_MODEL_NAME (str | None)
ANTHROPIC_API_KEY (SecretStr | None)
GOOGLE_VERTEXAI_MODEL_NAME (str | None)
GOOGLE_VERTEXAI_API_KEY (SecretStr | None)
GOOGLE_GENAI_MODEL_NAME (str | None)
GOOGLE_GENAI_API_KEY (SecretStr | None)
AWS_BEDROCK_MODEL_NAME (str | None)
DEEPSEEK_MODEL_NAME (str | None)
DEEPSEEK_API_KEY (SecretStr | None)
OLLAMA_MODEL_NAME (str | None)
OLLAMA_BASE_URL (str | None)
OBSERVABILITY_BACKEND (ObservabilityBackend | None)
LANGCHAIN_TRACING_V2 (bool)
LANGCHAIN_PROJECT (str)
LANGCHAIN_ENDPOINT (Annotated[str, BeforeValidator(func=~langgraph_agent_toolkit.helper.utils.check_str_is_http, json_schema_input_type=PydanticUndefined)])
LANGCHAIN_API_KEY (SecretStr | None)
LANGFUSE_SECRET_KEY (SecretStr | None)
LANGFUSE_PUBLIC_KEY (SecretStr | None)
LANGFUSE_HOST (Annotated[str, BeforeValidator(func=~langgraph_agent_toolkit.helper.utils.check_str_is_http, json_schema_input_type=PydanticUndefined)])
MEMORY_BACKEND (MemoryBackends)
SQLITE_DB_PATH (str)
POSTGRES_USER (str | None)
POSTGRES_PASSWORD (SecretStr | None)
POSTGRES_HOST (str | None)
POSTGRES_PORT (int | None)
POSTGRES_DB (str | None)
POSTGRES_POOL_SIZE (int)
POSTGRES_MIN_SIZE (int)
POSTGRES_MAX_IDLE (int)
- model_config: ClassVar[SettingsConfigDict] = {'arbitrary_types_allowed': True, 'case_sensitive': False, 'cli_avoid_json': False, 'cli_enforce_required': False, 'cli_exit_on_error': True, 'cli_flag_prefix_char': '-', 'cli_hide_none_type': False, 'cli_ignore_unknown_args': False, 'cli_implicit_flags': False, 'cli_kebab_case': False, 'cli_parse_args': None, 'cli_parse_none_str': None, 'cli_prefix': '', 'cli_prog_name': None, 'cli_shortcuts': None, 'cli_use_class_docs_for_groups': False, 'enable_decoding': True, 'env_file': '', 'env_file_encoding': 'utf-8', 'env_ignore_empty': True, 'env_nested_delimiter': None, 'env_nested_max_split': None, 'env_parse_enums': None, 'env_parse_none_str': None, 'env_prefix': '', 'extra': 'ignore', 'json_file': None, 'json_file_encoding': None, 'nested_model_default_partial_update': False, 'protected_namespaces': ('model_validate', 'model_dump', 'settings_customise_sources'), 'secrets_dir': None, 'toml_file': None, 'validate_default': False, 'yaml_config_section': None, 'yaml_file': None, 'yaml_file_encoding': None}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- OBSERVABILITY_BACKEND: ObservabilityBackend | None
- LANGCHAIN_ENDPOINT: Annotated[str, BeforeValidator(func=check_str_is_http, json_schema_input_type=PydanticUndefined)]
- LANGFUSE_HOST: Annotated[str, BeforeValidator(func=check_str_is_http, json_schema_input_type=PydanticUndefined)]
- MEMORY_BACKEND: MemoryBackends
- __init__(_case_sensitive=None, _nested_model_default_partial_update=None, _env_prefix=None, _env_file=ENV_FILE_SENTINEL, _env_file_encoding=None, _env_ignore_empty=None, _env_nested_delimiter=None, _env_nested_max_split=None, _env_parse_none_str=None, _env_parse_enums=None, _cli_prog_name=None, _cli_parse_args=None, _cli_settings_source=None, _cli_parse_none_str=None, _cli_hide_none_type=None, _cli_avoid_json=None, _cli_enforce_required=None, _cli_use_class_docs_for_groups=None, _cli_exit_on_error=None, _cli_prefix=None, _cli_flag_prefix_char=None, _cli_implicit_flags=None, _cli_ignore_unknown_args=None, _cli_kebab_case=None, _cli_shortcuts=None, _secrets_dir=None, **values)[source]
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- Parameters:
_case_sensitive (bool | None)
_nested_model_default_partial_update (bool | None)
_env_prefix (str | None)
_env_file_encoding (str | None)
_env_ignore_empty (bool | None)
_env_nested_delimiter (str | None)
_env_nested_max_split (int | None)
_env_parse_none_str (str | None)
_env_parse_enums (bool | None)
_cli_prog_name (str | None)
_cli_settings_source (CliSettingsSource[Any] | None)
_cli_parse_none_str (str | None)
_cli_hide_none_type (bool | None)
_cli_avoid_json (bool | None)
_cli_enforce_required (bool | None)
_cli_use_class_docs_for_groups (bool | None)
_cli_exit_on_error (bool | None)
_cli_prefix (str | None)
_cli_flag_prefix_char (str | None)
_cli_implicit_flags (bool | None)
_cli_ignore_unknown_args (bool | None)
_cli_kebab_case (bool | None)
values (Any)
- Return type:
None
- copy(*, include=None, exclude=None, update=None, deep=False)[source]
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `
- Parameters:
include (AbstractSetIntStr | MappingIntStrAny | None) – Optional set or mapping specifying which fields to include in the copied model.
exclude (AbstractSetIntStr | MappingIntStrAny | None) – Optional set or mapping specifying which fields to exclude in the copied model.
update (Dict[str, Any] | None) – Optional dictionary of field-value pairs to override field values in the copied model.
deep (bool) – If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- Return type:
Self
- dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
- Parameters:
include (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None)
exclude (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None)
by_alias (bool)
exclude_unset (bool)
exclude_defaults (bool)
exclude_none (bool)
- Return type:
- json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
- Parameters:
include (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None)
exclude (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None)
by_alias (bool)
exclude_unset (bool)
exclude_defaults (bool)
exclude_none (bool)
models_as_dict (bool)
dumps_kwargs (Any)
- Return type:
- model_computed_fields = {'BASE_URL': ComputedFieldInfo(wrapped_property=<property object>, return_type=<class 'str'>, alias=None, alias_priority=None, title=None, field_title_generator=None, description=None, deprecated=None, examples=None, json_schema_extra=None, repr=True)}
- classmethod model_construct(_fields_set=None, **values)[source]
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.
- !!! note
model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == ‘allow’, then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == ‘ignore’ (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == ‘forbid’ does not result in an error if extra values are passed, but they will be ignored.
- Parameters:
_fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.
values (Any) – Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- Return type:
- model_copy(*, update=None, deep=False)[source]
- !!! abstract “Usage Documentation”
[model_copy](../concepts/serialization.md#model_copy)
Returns a copy of the model.
- !!! note
The underlying instance’s [__dict__][object.__dict__] attribute is copied. This might have unexpected side effects if you store anything in it, on top of the model fields (e.g. the value of [cached properties][functools.cached_property]).
- model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=None, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, fallback=None, serialize_as_any=False)[source]
- !!! abstract “Usage Documentation”
[model_dump](../concepts/serialization.md#modelmodel_dump)
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Parameters:
mode (Literal['json', 'python'] | str) – The mode in which to_python should run. If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None) – A set of fields to include in the output.
exclude (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None) – A set of fields to exclude from the output.
context (Any | None) – Additional context to pass to the serializer.
by_alias (bool | None) – Whether to use the field’s alias in the dictionary key if defined.
exclude_unset (bool) – Whether to exclude fields that have not been explicitly set.
exclude_defaults (bool) – Whether to exclude fields that are set to their default value.
exclude_none (bool) – Whether to exclude fields that have a value of None.
round_trip (bool) – If True, dumped values should be valid as input for non-idempotent types such as Json[T].
warnings (bool | Literal['none', 'warn', 'error']) – How to handle serialization errors. False/”none” ignores them, True/”warn” logs errors, “error” raises a [PydanticSerializationError][pydantic_core.PydanticSerializationError].
fallback (Callable[[Any], Any] | None) – A function to call when an unknown value is encountered. If not provided, a [PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised.
serialize_as_any (bool) – Whether to serialize fields with duck-typing serialization behavior.
- Returns:
A dictionary representation of the model.
- Return type:
- model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=None, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, fallback=None, serialize_as_any=False)[source]
- !!! abstract “Usage Documentation”
[model_dump_json](../concepts/serialization.md#modelmodel_dump_json)
Generates a JSON representation of the model using Pydantic’s to_json method.
- Parameters:
indent (int | None) – Indentation to use in the JSON output. If None is passed, the output will be compact.
include (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None) – Field(s) to include in the JSON output.
exclude (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None) – Field(s) to exclude from the JSON output.
context (Any | None) – Additional context to pass to the serializer.
by_alias (bool | None) – Whether to serialize using field aliases.
exclude_unset (bool) – Whether to exclude fields that have not been explicitly set.
exclude_defaults (bool) – Whether to exclude fields that are set to their default value.
exclude_none (bool) – Whether to exclude fields that have a value of None.
round_trip (bool) – If True, dumped values should be valid as input for non-idempotent types such as Json[T].
warnings (bool | Literal['none', 'warn', 'error']) – How to handle serialization errors. False/”none” ignores them, True/”warn” logs errors, “error” raises a [PydanticSerializationError][pydantic_core.PydanticSerializationError].
fallback (Callable[[Any], Any] | None) – A function to call when an unknown value is encountered. If not provided, a [PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised.
serialize_as_any (bool) – Whether to serialize fields with duck-typing serialization behavior.
- Returns:
A JSON string representation of the model.
- Return type:
- property model_extra: dict[str, Any] | None
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- model_fields = {'AGENT_PATHS': FieldInfo(annotation=list[str], required=False, default=['langgraph_agent_toolkit.agents.blueprints.react.agent:react_agent', 'langgraph_agent_toolkit.agents.blueprints.chatbot.agent:chatbot_agent', 'langgraph_agent_toolkit.agents.blueprints.react_so.agent:react_agent_so']), 'ANTHROPIC_API_KEY': FieldInfo(annotation=Union[SecretStr, NoneType], required=False, default=None), 'ANTHROPIC_MODEL_NAME': FieldInfo(annotation=Union[str, NoneType], required=False, default=None), 'AUTH_SECRET': FieldInfo(annotation=Union[SecretStr, NoneType], required=False, default=None), 'AWS_BEDROCK_MODEL_NAME': FieldInfo(annotation=Union[str, NoneType], required=False, default=None), 'AZURE_OPENAI_API_KEY': FieldInfo(annotation=Union[SecretStr, NoneType], required=False, default=None), 'AZURE_OPENAI_API_VERSION': FieldInfo(annotation=Union[str, NoneType], required=False, default=None), 'AZURE_OPENAI_DEPLOYMENT_NAME': FieldInfo(annotation=Union[str, NoneType], required=False, default=None), 'AZURE_OPENAI_ENDPOINT': FieldInfo(annotation=Union[str, NoneType], required=False, default=None), 'AZURE_OPENAI_MODEL_NAME': FieldInfo(annotation=Union[str, NoneType], required=False, default=None), 'DEEPSEEK_API_KEY': FieldInfo(annotation=Union[SecretStr, NoneType], required=False, default=None), 'DEEPSEEK_MODEL_NAME': FieldInfo(annotation=Union[str, NoneType], required=False, default=None), 'ENV_MODE': FieldInfo(annotation=Union[str, NoneType], required=False, default=None), 'GOOGLE_GENAI_API_KEY': FieldInfo(annotation=Union[SecretStr, NoneType], required=False, default=None), 'GOOGLE_GENAI_MODEL_NAME': FieldInfo(annotation=Union[str, NoneType], required=False, default=None), 'GOOGLE_VERTEXAI_API_KEY': FieldInfo(annotation=Union[SecretStr, NoneType], required=False, default=None), 'GOOGLE_VERTEXAI_MODEL_NAME': FieldInfo(annotation=Union[str, NoneType], required=False, default=None), 'HOST': FieldInfo(annotation=str, required=False, default='0.0.0.0'), 'LANGCHAIN_API_KEY': FieldInfo(annotation=Union[SecretStr, NoneType], required=False, default=None), 'LANGCHAIN_ENDPOINT': FieldInfo(annotation=str, required=False, default='https://api.smith.langchain.com', metadata=[BeforeValidator(func=<function check_str_is_http>, json_schema_input_type=PydanticUndefined)]), 'LANGCHAIN_PROJECT': FieldInfo(annotation=str, required=False, default='default'), 'LANGCHAIN_TRACING_V2': FieldInfo(annotation=bool, required=False, default=False), 'LANGFUSE_HOST': FieldInfo(annotation=str, required=False, default='https://cloud.langfuse.com', metadata=[BeforeValidator(func=<function check_str_is_http>, json_schema_input_type=PydanticUndefined)]), 'LANGFUSE_PUBLIC_KEY': FieldInfo(annotation=Union[SecretStr, NoneType], required=False, default=None), 'LANGFUSE_SECRET_KEY': FieldInfo(annotation=Union[SecretStr, NoneType], required=False, default=None), 'MEMORY_BACKEND': FieldInfo(annotation=MemoryBackends, required=False, default=<MemoryBackends.SQLITE: 'sqlite'>), 'MODEL_CONFIGS': FieldInfo(annotation=Dict[str, Dict[str, Any]], required=False, default_factory=dict), 'OBSERVABILITY_BACKEND': FieldInfo(annotation=Union[ObservabilityBackend, NoneType], required=False, default=None), 'OLLAMA_BASE_URL': FieldInfo(annotation=Union[str, NoneType], required=False, default=None), 'OLLAMA_MODEL_NAME': FieldInfo(annotation=Union[str, NoneType], required=False, default=None), 'OPENAI_API_BASE_URL': FieldInfo(annotation=Union[str, NoneType], required=False, default=None), 'OPENAI_API_KEY': FieldInfo(annotation=Union[SecretStr, NoneType], required=False, default=None), 'OPENAI_API_VERSION': FieldInfo(annotation=Union[str, NoneType], required=False, default=None), 'OPENAI_MODEL_NAME': FieldInfo(annotation=Union[str, NoneType], required=False, default=None), 'PORT': FieldInfo(annotation=int, required=False, default=8080), 'POSTGRES_DB': FieldInfo(annotation=Union[str, NoneType], required=False, default=None), 'POSTGRES_HOST': FieldInfo(annotation=Union[str, NoneType], required=False, default=None), 'POSTGRES_MAX_IDLE': FieldInfo(annotation=int, required=False, default=300, description='Maximum number of idle connections'), 'POSTGRES_MIN_SIZE': FieldInfo(annotation=int, required=False, default=10, description='Minimum number of connections in the pool'), 'POSTGRES_PASSWORD': FieldInfo(annotation=Union[SecretStr, NoneType], required=False, default=None), 'POSTGRES_POOL_SIZE': FieldInfo(annotation=int, required=False, default=200, description='Maximum number of connections in the pool'), 'POSTGRES_PORT': FieldInfo(annotation=Union[int, NoneType], required=False, default=None), 'POSTGRES_USER': FieldInfo(annotation=Union[str, NoneType], required=False, default=None), 'SQLITE_DB_PATH': FieldInfo(annotation=str, required=False, default='checkpoints.db'), 'USE_FAKE_MODEL': FieldInfo(annotation=bool, required=False, default=False)}
- property model_fields_set: set[str]
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- classmethod model_json_schema(by_alias=True, ref_template=DEFAULT_REF_TEMPLATE, schema_generator=GenerateJsonSchema, mode='validation')[source]
Generates a JSON schema for a model class.
- Parameters:
by_alias (bool) – Whether to use attribute aliases or not.
ref_template (str) – The reference template.
schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications
mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- Return type:
- classmethod model_parametrized_name(params)[source]
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Parameters:
params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError – Raised when trying to generate concrete names for non-generic models.
- Return type:
- model_post_init(context, /)[source]
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- Parameters:
context (Any)
- Return type:
None
- classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Parameters:
force (bool) – Whether to force the rebuilding of the model schema, defaults to False.
raise_errors (bool) – Whether to raise errors, defaults to True.
_parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.
_types_namespace (MappingNamespace | None) – The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- Return type:
bool | None
- classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None, by_alias=None, by_name=None)[source]
Validate a pydantic model instance.
- Parameters:
obj (Any) – The object to validate.
strict (bool | None) – Whether to enforce types strictly.
from_attributes (bool | None) – Whether to extract data from object attributes.
context (Any | None) – Additional context to pass to the validator.
by_alias (bool | None) – Whether to use the field’s alias when validating against the provided input data.
by_name (bool | None) – Whether to use the field’s name when validating against the provided input data.
- Raises:
ValidationError – If the object could not be validated.
- Returns:
The validated model instance.
- Return type:
- classmethod model_validate_json(json_data, *, strict=None, context=None, by_alias=None, by_name=None)[source]
- !!! abstract “Usage Documentation”
[JSON Parsing](../concepts/json.md#json-parsing)
Validate the given JSON data against the Pydantic model.
- Parameters:
json_data (str | bytes | bytearray) – The JSON data to validate.
strict (bool | None) – Whether to enforce types strictly.
context (Any | None) – Extra variables to pass to the validator.
by_alias (bool | None) – Whether to use the field’s alias when validating against the provided input data.
by_name (bool | None) – Whether to use the field’s name when validating against the provided input data.
- Returns:
The validated Pydantic model.
- Raises:
ValidationError – If json_data is not a JSON string or the object could not be validated.
- Return type:
- classmethod model_validate_strings(obj, *, strict=None, context=None, by_alias=None, by_name=None)[source]
Validate the given object with string data against the Pydantic model.
- Parameters:
obj (Any) – The object containing string data to validate.
strict (bool | None) – Whether to enforce types strictly.
context (Any | None) – Extra variables to pass to the validator.
by_alias (bool | None) – Whether to use the field’s alias when validating against the provided input data.
by_name (bool | None) – Whether to use the field’s name when validating against the provided input data.
- Returns:
The validated Pydantic model.
- Return type:
- classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
- classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
- classmethod schema_json(*, by_alias=True, ref_template=DEFAULT_REF_TEMPLATE, **dumps_kwargs)[source]
- classmethod settings_customise_sources(settings_cls, init_settings, env_settings, dotenv_settings, file_secret_settings)[source]
Define the sources and their order for loading the settings values.
- Parameters:
settings_cls (type[BaseSettings]) – The Settings class.
init_settings (PydanticBaseSettingsSource) – The InitSettingsSource instance.
env_settings (PydanticBaseSettingsSource) – The EnvSettingsSource instance.
dotenv_settings (PydanticBaseSettingsSource) – The DotEnvSettingsSource instance.
file_secret_settings (PydanticBaseSettingsSource) – The SecretsSettingsSource instance.
- Returns:
A tuple containing the sources and their order for loading the settings values.
- Return type:
tuple[PydanticBaseSettingsSource, …]