langgraph_agent_toolkit.schema package
- class langgraph_agent_toolkit.schema.AddMessagesInput(*, thread_id=None, user_id=None, messages)[source][source]
Bases:
BaseModelInput for adding messages to the chat history.
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- Parameters:
thread_id (str | None)
user_id (str | None)
messages (list[MessageInput])
- __init__(**data)[source]
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- Parameters:
data (Any)
- Return type:
None
- copy(*, include=None, exclude=None, update=None, deep=False)[source]
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Parameters:
include (AbstractSetIntStr | MappingIntStrAny | None) – Optional set or mapping specifying which fields to include in the copied model.
exclude (AbstractSetIntStr | MappingIntStrAny | None) – Optional set or mapping specifying which fields to exclude in the copied model.
update (Dict[str, Any] | None) – Optional dictionary of field-value pairs to override field values in the copied model.
deep (bool) – If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- Return type:
Self
- dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
- Parameters:
include (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None)
exclude (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None)
by_alias (bool)
exclude_unset (bool)
exclude_defaults (bool)
exclude_none (bool)
- Return type:
- json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
- Parameters:
include (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None)
exclude (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None)
by_alias (bool)
exclude_unset (bool)
exclude_defaults (bool)
exclude_none (bool)
models_as_dict (bool)
dumps_kwargs (Any)
- Return type:
- model_computed_fields = {}
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- classmethod model_construct(_fields_set=None, **values)[source]
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.
- !!! note
model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == ‘allow’, then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == ‘ignore’ (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == ‘forbid’ does not result in an error if extra values are passed, but they will be ignored.
- Parameters:
_fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.
values (Any) – Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- Return type:
- model_copy(*, update=None, deep=False)[source]
- !!! abstract “Usage Documentation”
[model_copy](../concepts/serialization.md#model_copy)
Returns a copy of the model.
- !!! note
The underlying instance’s [__dict__][object.__dict__] attribute is copied. This might have unexpected side effects if you store anything in it, on top of the model fields (e.g. the value of [cached properties][functools.cached_property]).
- model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=None, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, fallback=None, serialize_as_any=False)[source]
- !!! abstract “Usage Documentation”
[model_dump](../concepts/serialization.md#modelmodel_dump)
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Parameters:
mode (Literal['json', 'python'] | str) – The mode in which to_python should run. If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None) – A set of fields to include in the output.
exclude (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None) – A set of fields to exclude from the output.
context (Any | None) – Additional context to pass to the serializer.
by_alias (bool | None) – Whether to use the field’s alias in the dictionary key if defined.
exclude_unset (bool) – Whether to exclude fields that have not been explicitly set.
exclude_defaults (bool) – Whether to exclude fields that are set to their default value.
exclude_none (bool) – Whether to exclude fields that have a value of None.
round_trip (bool) – If True, dumped values should be valid as input for non-idempotent types such as Json[T].
warnings (bool | Literal['none', 'warn', 'error']) – How to handle serialization errors. False/”none” ignores them, True/”warn” logs errors, “error” raises a [PydanticSerializationError][pydantic_core.PydanticSerializationError].
fallback (Callable[[Any], Any] | None) – A function to call when an unknown value is encountered. If not provided, a [PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised.
serialize_as_any (bool) – Whether to serialize fields with duck-typing serialization behavior.
- Returns:
A dictionary representation of the model.
- Return type:
- model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=None, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, fallback=None, serialize_as_any=False)[source]
- !!! abstract “Usage Documentation”
[model_dump_json](../concepts/serialization.md#modelmodel_dump_json)
Generates a JSON representation of the model using Pydantic’s to_json method.
- Parameters:
indent (int | None) – Indentation to use in the JSON output. If None is passed, the output will be compact.
include (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None) – Field(s) to include in the JSON output.
exclude (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None) – Field(s) to exclude from the JSON output.
context (Any | None) – Additional context to pass to the serializer.
by_alias (bool | None) – Whether to serialize using field aliases.
exclude_unset (bool) – Whether to exclude fields that have not been explicitly set.
exclude_defaults (bool) – Whether to exclude fields that are set to their default value.
exclude_none (bool) – Whether to exclude fields that have a value of None.
round_trip (bool) – If True, dumped values should be valid as input for non-idempotent types such as Json[T].
warnings (bool | Literal['none', 'warn', 'error']) – How to handle serialization errors. False/”none” ignores them, True/”warn” logs errors, “error” raises a [PydanticSerializationError][pydantic_core.PydanticSerializationError].
fallback (Callable[[Any], Any] | None) – A function to call when an unknown value is encountered. If not provided, a [PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised.
serialize_as_any (bool) – Whether to serialize fields with duck-typing serialization behavior.
- Returns:
A JSON string representation of the model.
- Return type:
- property model_extra: dict[str, Any] | None
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- model_fields = {'messages': FieldInfo(annotation=list[MessageInput], required=True, description='List of messages to add to the chat history.', examples=[[{'type': 'human', 'content': 'Hello, how are you?'}, {'type': 'ai', 'content': "I'm doing well, thank you! How can I assist you today?"}]]), 'thread_id': FieldInfo(annotation=Union[str, NoneType], required=False, default=None, description='Thread ID to persist and continue a multi-turn conversation.', examples=['847c6285-8fc9-4560-a83f-4e6285809254']), 'user_id': FieldInfo(annotation=Union[str, NoneType], required=False, default=None, description='User ID to persist in observability platform and share long-term memory.', examples=['521c0a60-ea75-43fa-a793-a4cf11e013ae'])}
- property model_fields_set: set[str]
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- classmethod model_json_schema(by_alias=True, ref_template=DEFAULT_REF_TEMPLATE, schema_generator=GenerateJsonSchema, mode='validation')[source]
Generates a JSON schema for a model class.
- Parameters:
by_alias (bool) – Whether to use attribute aliases or not.
ref_template (str) – The reference template.
schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications
mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- Return type:
- classmethod model_parametrized_name(params)[source]
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Parameters:
params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError – Raised when trying to generate concrete names for non-generic models.
- Return type:
- model_post_init(context, /)[source]
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- Parameters:
context (Any)
- Return type:
None
- classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Parameters:
force (bool) – Whether to force the rebuilding of the model schema, defaults to False.
raise_errors (bool) – Whether to raise errors, defaults to True.
_parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.
_types_namespace (MappingNamespace | None) – The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- Return type:
bool | None
- classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None, by_alias=None, by_name=None)[source]
Validate a pydantic model instance.
- Parameters:
obj (Any) – The object to validate.
strict (bool | None) – Whether to enforce types strictly.
from_attributes (bool | None) – Whether to extract data from object attributes.
context (Any | None) – Additional context to pass to the validator.
by_alias (bool | None) – Whether to use the field’s alias when validating against the provided input data.
by_name (bool | None) – Whether to use the field’s name when validating against the provided input data.
- Raises:
ValidationError – If the object could not be validated.
- Returns:
The validated model instance.
- Return type:
- classmethod model_validate_json(json_data, *, strict=None, context=None, by_alias=None, by_name=None)[source]
- !!! abstract “Usage Documentation”
[JSON Parsing](../concepts/json.md#json-parsing)
Validate the given JSON data against the Pydantic model.
- Parameters:
json_data (str | bytes | bytearray) – The JSON data to validate.
strict (bool | None) – Whether to enforce types strictly.
context (Any | None) – Extra variables to pass to the validator.
by_alias (bool | None) – Whether to use the field’s alias when validating against the provided input data.
by_name (bool | None) – Whether to use the field’s name when validating against the provided input data.
- Returns:
The validated Pydantic model.
- Raises:
ValidationError – If json_data is not a JSON string or the object could not be validated.
- Return type:
- classmethod model_validate_strings(obj, *, strict=None, context=None, by_alias=None, by_name=None)[source]
Validate the given object with string data against the Pydantic model.
- Parameters:
obj (Any) – The object containing string data to validate.
strict (bool | None) – Whether to enforce types strictly.
context (Any | None) – Extra variables to pass to the validator.
by_alias (bool | None) – Whether to use the field’s alias when validating against the provided input data.
by_name (bool | None) – Whether to use the field’s name when validating against the provided input data.
- Returns:
The validated Pydantic model.
- Return type:
- classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
- classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
- classmethod schema_json(*, by_alias=True, ref_template=DEFAULT_REF_TEMPLATE, **dumps_kwargs)[source]
- messages: list[MessageInput]
- class langgraph_agent_toolkit.schema.AddMessagesResponse(*, status='success', thread_id=None, user_id=None, message='Messages added successfully.')[source][source]
Bases:
BaseModelResponse after adding messages to the chat history.
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- __init__(**data)[source]
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- Parameters:
data (Any)
- Return type:
None
- copy(*, include=None, exclude=None, update=None, deep=False)[source]
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Parameters:
include (AbstractSetIntStr | MappingIntStrAny | None) – Optional set or mapping specifying which fields to include in the copied model.
exclude (AbstractSetIntStr | MappingIntStrAny | None) – Optional set or mapping specifying which fields to exclude in the copied model.
update (Dict[str, Any] | None) – Optional dictionary of field-value pairs to override field values in the copied model.
deep (bool) – If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- Return type:
Self
- dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
- Parameters:
include (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None)
exclude (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None)
by_alias (bool)
exclude_unset (bool)
exclude_defaults (bool)
exclude_none (bool)
- Return type:
- json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
- Parameters:
include (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None)
exclude (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None)
by_alias (bool)
exclude_unset (bool)
exclude_defaults (bool)
exclude_none (bool)
models_as_dict (bool)
dumps_kwargs (Any)
- Return type:
- model_computed_fields = {}
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- classmethod model_construct(_fields_set=None, **values)[source]
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.
- !!! note
model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == ‘allow’, then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == ‘ignore’ (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == ‘forbid’ does not result in an error if extra values are passed, but they will be ignored.
- Parameters:
_fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.
values (Any) – Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- Return type:
- model_copy(*, update=None, deep=False)[source]
- !!! abstract “Usage Documentation”
[model_copy](../concepts/serialization.md#model_copy)
Returns a copy of the model.
- !!! note
The underlying instance’s [__dict__][object.__dict__] attribute is copied. This might have unexpected side effects if you store anything in it, on top of the model fields (e.g. the value of [cached properties][functools.cached_property]).
- model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=None, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, fallback=None, serialize_as_any=False)[source]
- !!! abstract “Usage Documentation”
[model_dump](../concepts/serialization.md#modelmodel_dump)
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Parameters:
mode (Literal['json', 'python'] | str) – The mode in which to_python should run. If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None) – A set of fields to include in the output.
exclude (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None) – A set of fields to exclude from the output.
context (Any | None) – Additional context to pass to the serializer.
by_alias (bool | None) – Whether to use the field’s alias in the dictionary key if defined.
exclude_unset (bool) – Whether to exclude fields that have not been explicitly set.
exclude_defaults (bool) – Whether to exclude fields that are set to their default value.
exclude_none (bool) – Whether to exclude fields that have a value of None.
round_trip (bool) – If True, dumped values should be valid as input for non-idempotent types such as Json[T].
warnings (bool | Literal['none', 'warn', 'error']) – How to handle serialization errors. False/”none” ignores them, True/”warn” logs errors, “error” raises a [PydanticSerializationError][pydantic_core.PydanticSerializationError].
fallback (Callable[[Any], Any] | None) – A function to call when an unknown value is encountered. If not provided, a [PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised.
serialize_as_any (bool) – Whether to serialize fields with duck-typing serialization behavior.
- Returns:
A dictionary representation of the model.
- Return type:
- model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=None, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, fallback=None, serialize_as_any=False)[source]
- !!! abstract “Usage Documentation”
[model_dump_json](../concepts/serialization.md#modelmodel_dump_json)
Generates a JSON representation of the model using Pydantic’s to_json method.
- Parameters:
indent (int | None) – Indentation to use in the JSON output. If None is passed, the output will be compact.
include (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None) – Field(s) to include in the JSON output.
exclude (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None) – Field(s) to exclude from the JSON output.
context (Any | None) – Additional context to pass to the serializer.
by_alias (bool | None) – Whether to serialize using field aliases.
exclude_unset (bool) – Whether to exclude fields that have not been explicitly set.
exclude_defaults (bool) – Whether to exclude fields that are set to their default value.
exclude_none (bool) – Whether to exclude fields that have a value of None.
round_trip (bool) – If True, dumped values should be valid as input for non-idempotent types such as Json[T].
warnings (bool | Literal['none', 'warn', 'error']) – How to handle serialization errors. False/”none” ignores them, True/”warn” logs errors, “error” raises a [PydanticSerializationError][pydantic_core.PydanticSerializationError].
fallback (Callable[[Any], Any] | None) – A function to call when an unknown value is encountered. If not provided, a [PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised.
serialize_as_any (bool) – Whether to serialize fields with duck-typing serialization behavior.
- Returns:
A JSON string representation of the model.
- Return type:
- property model_extra: dict[str, Any] | None
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- model_fields = {'message': FieldInfo(annotation=str, required=False, default='Messages added successfully.', description='Descriptive message about the operation.'), 'status': FieldInfo(annotation=Literal['success'], required=False, default='success'), 'thread_id': FieldInfo(annotation=Union[str, NoneType], required=False, default=None, description='Thread ID for which the message was added.', examples=['847c6285-8fc9-4560-a83f-4e6285809254']), 'user_id': FieldInfo(annotation=Union[str, NoneType], required=False, default=None, description='User ID associated with the message.', examples=['521c0a60-ea75-43fa-a793-a4cf11e013ae'])}
- property model_fields_set: set[str]
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- classmethod model_json_schema(by_alias=True, ref_template=DEFAULT_REF_TEMPLATE, schema_generator=GenerateJsonSchema, mode='validation')[source]
Generates a JSON schema for a model class.
- Parameters:
by_alias (bool) – Whether to use attribute aliases or not.
ref_template (str) – The reference template.
schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications
mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- Return type:
- classmethod model_parametrized_name(params)[source]
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Parameters:
params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError – Raised when trying to generate concrete names for non-generic models.
- Return type:
- model_post_init(context, /)[source]
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- Parameters:
context (Any)
- Return type:
None
- classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Parameters:
force (bool) – Whether to force the rebuilding of the model schema, defaults to False.
raise_errors (bool) – Whether to raise errors, defaults to True.
_parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.
_types_namespace (MappingNamespace | None) – The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- Return type:
bool | None
- classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None, by_alias=None, by_name=None)[source]
Validate a pydantic model instance.
- Parameters:
obj (Any) – The object to validate.
strict (bool | None) – Whether to enforce types strictly.
from_attributes (bool | None) – Whether to extract data from object attributes.
context (Any | None) – Additional context to pass to the validator.
by_alias (bool | None) – Whether to use the field’s alias when validating against the provided input data.
by_name (bool | None) – Whether to use the field’s name when validating against the provided input data.
- Raises:
ValidationError – If the object could not be validated.
- Returns:
The validated model instance.
- Return type:
- classmethod model_validate_json(json_data, *, strict=None, context=None, by_alias=None, by_name=None)[source]
- !!! abstract “Usage Documentation”
[JSON Parsing](../concepts/json.md#json-parsing)
Validate the given JSON data against the Pydantic model.
- Parameters:
json_data (str | bytes | bytearray) – The JSON data to validate.
strict (bool | None) – Whether to enforce types strictly.
context (Any | None) – Extra variables to pass to the validator.
by_alias (bool | None) – Whether to use the field’s alias when validating against the provided input data.
by_name (bool | None) – Whether to use the field’s name when validating against the provided input data.
- Returns:
The validated Pydantic model.
- Raises:
ValidationError – If json_data is not a JSON string or the object could not be validated.
- Return type:
- classmethod model_validate_strings(obj, *, strict=None, context=None, by_alias=None, by_name=None)[source]
Validate the given object with string data against the Pydantic model.
- Parameters:
obj (Any) – The object containing string data to validate.
strict (bool | None) – Whether to enforce types strictly.
context (Any | None) – Extra variables to pass to the validator.
by_alias (bool | None) – Whether to use the field’s alias when validating against the provided input data.
by_name (bool | None) – Whether to use the field’s name when validating against the provided input data.
- Returns:
The validated Pydantic model.
- Return type:
- classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
- classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
- class langgraph_agent_toolkit.schema.AgentInfo(*, key, description)[source][source]
Bases:
BaseModelInfo about an available agent.
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- __init__(**data)[source]
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- Parameters:
data (Any)
- Return type:
None
- copy(*, include=None, exclude=None, update=None, deep=False)[source]
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Parameters:
include (AbstractSetIntStr | MappingIntStrAny | None) – Optional set or mapping specifying which fields to include in the copied model.
exclude (AbstractSetIntStr | MappingIntStrAny | None) – Optional set or mapping specifying which fields to exclude in the copied model.
update (Dict[str, Any] | None) – Optional dictionary of field-value pairs to override field values in the copied model.
deep (bool) – If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- Return type:
Self
- dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
- Parameters:
include (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None)
exclude (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None)
by_alias (bool)
exclude_unset (bool)
exclude_defaults (bool)
exclude_none (bool)
- Return type:
- json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
- Parameters:
include (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None)
exclude (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None)
by_alias (bool)
exclude_unset (bool)
exclude_defaults (bool)
exclude_none (bool)
models_as_dict (bool)
dumps_kwargs (Any)
- Return type:
- model_computed_fields = {}
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- classmethod model_construct(_fields_set=None, **values)[source]
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.
- !!! note
model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == ‘allow’, then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == ‘ignore’ (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == ‘forbid’ does not result in an error if extra values are passed, but they will be ignored.
- Parameters:
_fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.
values (Any) – Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- Return type:
- model_copy(*, update=None, deep=False)[source]
- !!! abstract “Usage Documentation”
[model_copy](../concepts/serialization.md#model_copy)
Returns a copy of the model.
- !!! note
The underlying instance’s [__dict__][object.__dict__] attribute is copied. This might have unexpected side effects if you store anything in it, on top of the model fields (e.g. the value of [cached properties][functools.cached_property]).
- model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=None, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, fallback=None, serialize_as_any=False)[source]
- !!! abstract “Usage Documentation”
[model_dump](../concepts/serialization.md#modelmodel_dump)
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Parameters:
mode (Literal['json', 'python'] | str) – The mode in which to_python should run. If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None) – A set of fields to include in the output.
exclude (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None) – A set of fields to exclude from the output.
context (Any | None) – Additional context to pass to the serializer.
by_alias (bool | None) – Whether to use the field’s alias in the dictionary key if defined.
exclude_unset (bool) – Whether to exclude fields that have not been explicitly set.
exclude_defaults (bool) – Whether to exclude fields that are set to their default value.
exclude_none (bool) – Whether to exclude fields that have a value of None.
round_trip (bool) – If True, dumped values should be valid as input for non-idempotent types such as Json[T].
warnings (bool | Literal['none', 'warn', 'error']) – How to handle serialization errors. False/”none” ignores them, True/”warn” logs errors, “error” raises a [PydanticSerializationError][pydantic_core.PydanticSerializationError].
fallback (Callable[[Any], Any] | None) – A function to call when an unknown value is encountered. If not provided, a [PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised.
serialize_as_any (bool) – Whether to serialize fields with duck-typing serialization behavior.
- Returns:
A dictionary representation of the model.
- Return type:
- model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=None, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, fallback=None, serialize_as_any=False)[source]
- !!! abstract “Usage Documentation”
[model_dump_json](../concepts/serialization.md#modelmodel_dump_json)
Generates a JSON representation of the model using Pydantic’s to_json method.
- Parameters:
indent (int | None) – Indentation to use in the JSON output. If None is passed, the output will be compact.
include (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None) – Field(s) to include in the JSON output.
exclude (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None) – Field(s) to exclude from the JSON output.
context (Any | None) – Additional context to pass to the serializer.
by_alias (bool | None) – Whether to serialize using field aliases.
exclude_unset (bool) – Whether to exclude fields that have not been explicitly set.
exclude_defaults (bool) – Whether to exclude fields that are set to their default value.
exclude_none (bool) – Whether to exclude fields that have a value of None.
round_trip (bool) – If True, dumped values should be valid as input for non-idempotent types such as Json[T].
warnings (bool | Literal['none', 'warn', 'error']) – How to handle serialization errors. False/”none” ignores them, True/”warn” logs errors, “error” raises a [PydanticSerializationError][pydantic_core.PydanticSerializationError].
fallback (Callable[[Any], Any] | None) – A function to call when an unknown value is encountered. If not provided, a [PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised.
serialize_as_any (bool) – Whether to serialize fields with duck-typing serialization behavior.
- Returns:
A JSON string representation of the model.
- Return type:
- property model_extra: dict[str, Any] | None
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- model_fields = {'description': FieldInfo(annotation=str, required=True, description='Description of the agent.', examples=['A research assistant.']), 'key': FieldInfo(annotation=str, required=True, description='Agent key.', examples=['langgraph-supervisor-agent'])}
- property model_fields_set: set[str]
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- classmethod model_json_schema(by_alias=True, ref_template=DEFAULT_REF_TEMPLATE, schema_generator=GenerateJsonSchema, mode='validation')[source]
Generates a JSON schema for a model class.
- Parameters:
by_alias (bool) – Whether to use attribute aliases or not.
ref_template (str) – The reference template.
schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications
mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- Return type:
- classmethod model_parametrized_name(params)[source]
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Parameters:
params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError – Raised when trying to generate concrete names for non-generic models.
- Return type:
- model_post_init(context, /)[source]
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- Parameters:
context (Any)
- Return type:
None
- classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Parameters:
force (bool) – Whether to force the rebuilding of the model schema, defaults to False.
raise_errors (bool) – Whether to raise errors, defaults to True.
_parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.
_types_namespace (MappingNamespace | None) – The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- Return type:
bool | None
- classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None, by_alias=None, by_name=None)[source]
Validate a pydantic model instance.
- Parameters:
obj (Any) – The object to validate.
strict (bool | None) – Whether to enforce types strictly.
from_attributes (bool | None) – Whether to extract data from object attributes.
context (Any | None) – Additional context to pass to the validator.
by_alias (bool | None) – Whether to use the field’s alias when validating against the provided input data.
by_name (bool | None) – Whether to use the field’s name when validating against the provided input data.
- Raises:
ValidationError – If the object could not be validated.
- Returns:
The validated model instance.
- Return type:
- classmethod model_validate_json(json_data, *, strict=None, context=None, by_alias=None, by_name=None)[source]
- !!! abstract “Usage Documentation”
[JSON Parsing](../concepts/json.md#json-parsing)
Validate the given JSON data against the Pydantic model.
- Parameters:
json_data (str | bytes | bytearray) – The JSON data to validate.
strict (bool | None) – Whether to enforce types strictly.
context (Any | None) – Extra variables to pass to the validator.
by_alias (bool | None) – Whether to use the field’s alias when validating against the provided input data.
by_name (bool | None) – Whether to use the field’s name when validating against the provided input data.
- Returns:
The validated Pydantic model.
- Raises:
ValidationError – If json_data is not a JSON string or the object could not be validated.
- Return type:
- classmethod model_validate_strings(obj, *, strict=None, context=None, by_alias=None, by_name=None)[source]
Validate the given object with string data against the Pydantic model.
- Parameters:
obj (Any) – The object containing string data to validate.
strict (bool | None) – Whether to enforce types strictly.
context (Any | None) – Extra variables to pass to the validator.
by_alias (bool | None) – Whether to use the field’s alias when validating against the provided input data.
by_name (bool | None) – Whether to use the field’s name when validating against the provided input data.
- Returns:
The validated Pydantic model.
- Return type:
- classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
- classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
- class langgraph_agent_toolkit.schema.UserComplexInput(*, message=None, **extra_data)[source][source]
Bases:
BaseModelBasic user input for the agent, supporting dynamic fields.
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- __init__(**data)[source]
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- Parameters:
data (Any)
- Return type:
None
- copy(*, include=None, exclude=None, update=None, deep=False)[source]
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Parameters:
include (AbstractSetIntStr | MappingIntStrAny | None) – Optional set or mapping specifying which fields to include in the copied model.
exclude (AbstractSetIntStr | MappingIntStrAny | None) – Optional set or mapping specifying which fields to exclude in the copied model.
update (Dict[str, Any] | None) – Optional dictionary of field-value pairs to override field values in the copied model.
deep (bool) – If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- Return type:
Self
- dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
- Parameters:
include (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None)
exclude (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None)
by_alias (bool)
exclude_unset (bool)
exclude_defaults (bool)
exclude_none (bool)
- Return type:
- json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
- Parameters:
include (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None)
exclude (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None)
by_alias (bool)
exclude_unset (bool)
exclude_defaults (bool)
exclude_none (bool)
models_as_dict (bool)
dumps_kwargs (Any)
- Return type:
- model_computed_fields = {}
- model_config: ClassVar[ConfigDict] = {'extra': 'allow'}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- classmethod model_construct(_fields_set=None, **values)[source]
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.
- !!! note
model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == ‘allow’, then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == ‘ignore’ (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == ‘forbid’ does not result in an error if extra values are passed, but they will be ignored.
- Parameters:
_fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.
values (Any) – Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- Return type:
- model_copy(*, update=None, deep=False)[source]
- !!! abstract “Usage Documentation”
[model_copy](../concepts/serialization.md#model_copy)
Returns a copy of the model.
- !!! note
The underlying instance’s [__dict__][object.__dict__] attribute is copied. This might have unexpected side effects if you store anything in it, on top of the model fields (e.g. the value of [cached properties][functools.cached_property]).
- model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=None, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, fallback=None, serialize_as_any=False)[source]
- !!! abstract “Usage Documentation”
[model_dump](../concepts/serialization.md#modelmodel_dump)
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Parameters:
mode (Literal['json', 'python'] | str) – The mode in which to_python should run. If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None) – A set of fields to include in the output.
exclude (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None) – A set of fields to exclude from the output.
context (Any | None) – Additional context to pass to the serializer.
by_alias (bool | None) – Whether to use the field’s alias in the dictionary key if defined.
exclude_unset (bool) – Whether to exclude fields that have not been explicitly set.
exclude_defaults (bool) – Whether to exclude fields that are set to their default value.
exclude_none (bool) – Whether to exclude fields that have a value of None.
round_trip (bool) – If True, dumped values should be valid as input for non-idempotent types such as Json[T].
warnings (bool | Literal['none', 'warn', 'error']) – How to handle serialization errors. False/”none” ignores them, True/”warn” logs errors, “error” raises a [PydanticSerializationError][pydantic_core.PydanticSerializationError].
fallback (Callable[[Any], Any] | None) – A function to call when an unknown value is encountered. If not provided, a [PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised.
serialize_as_any (bool) – Whether to serialize fields with duck-typing serialization behavior.
- Returns:
A dictionary representation of the model.
- Return type:
- model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=None, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, fallback=None, serialize_as_any=False)[source]
- !!! abstract “Usage Documentation”
[model_dump_json](../concepts/serialization.md#modelmodel_dump_json)
Generates a JSON representation of the model using Pydantic’s to_json method.
- Parameters:
indent (int | None) – Indentation to use in the JSON output. If None is passed, the output will be compact.
include (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None) – Field(s) to include in the JSON output.
exclude (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None) – Field(s) to exclude from the JSON output.
context (Any | None) – Additional context to pass to the serializer.
by_alias (bool | None) – Whether to serialize using field aliases.
exclude_unset (bool) – Whether to exclude fields that have not been explicitly set.
exclude_defaults (bool) – Whether to exclude fields that are set to their default value.
exclude_none (bool) – Whether to exclude fields that have a value of None.
round_trip (bool) – If True, dumped values should be valid as input for non-idempotent types such as Json[T].
warnings (bool | Literal['none', 'warn', 'error']) – How to handle serialization errors. False/”none” ignores them, True/”warn” logs errors, “error” raises a [PydanticSerializationError][pydantic_core.PydanticSerializationError].
fallback (Callable[[Any], Any] | None) – A function to call when an unknown value is encountered. If not provided, a [PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised.
serialize_as_any (bool) – Whether to serialize fields with duck-typing serialization behavior.
- Returns:
A JSON string representation of the model.
- Return type:
- property model_extra: dict[str, Any] | None
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- model_fields = {'message': FieldInfo(annotation=Union[str, NoneType], required=False, default=None, description='User input to the agent.', examples=['What is the weather in Tokyo?'])}
- property model_fields_set: set[str]
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- classmethod model_json_schema(by_alias=True, ref_template=DEFAULT_REF_TEMPLATE, schema_generator=GenerateJsonSchema, mode='validation')[source]
Generates a JSON schema for a model class.
- Parameters:
by_alias (bool) – Whether to use attribute aliases or not.
ref_template (str) – The reference template.
schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications
mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- Return type:
- classmethod model_parametrized_name(params)[source]
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Parameters:
params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError – Raised when trying to generate concrete names for non-generic models.
- Return type:
- model_post_init(context, /)[source]
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- Parameters:
context (Any)
- Return type:
None
- classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Parameters:
force (bool) – Whether to force the rebuilding of the model schema, defaults to False.
raise_errors (bool) – Whether to raise errors, defaults to True.
_parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.
_types_namespace (MappingNamespace | None) – The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- Return type:
bool | None
- classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None, by_alias=None, by_name=None)[source]
Validate a pydantic model instance.
- Parameters:
obj (Any) – The object to validate.
strict (bool | None) – Whether to enforce types strictly.
from_attributes (bool | None) – Whether to extract data from object attributes.
context (Any | None) – Additional context to pass to the validator.
by_alias (bool | None) – Whether to use the field’s alias when validating against the provided input data.
by_name (bool | None) – Whether to use the field’s name when validating against the provided input data.
- Raises:
ValidationError – If the object could not be validated.
- Returns:
The validated model instance.
- Return type:
- classmethod model_validate_json(json_data, *, strict=None, context=None, by_alias=None, by_name=None)[source]
- !!! abstract “Usage Documentation”
[JSON Parsing](../concepts/json.md#json-parsing)
Validate the given JSON data against the Pydantic model.
- Parameters:
json_data (str | bytes | bytearray) – The JSON data to validate.
strict (bool | None) – Whether to enforce types strictly.
context (Any | None) – Extra variables to pass to the validator.
by_alias (bool | None) – Whether to use the field’s alias when validating against the provided input data.
by_name (bool | None) – Whether to use the field’s name when validating against the provided input data.
- Returns:
The validated Pydantic model.
- Raises:
ValidationError – If json_data is not a JSON string or the object could not be validated.
- Return type:
- classmethod model_validate_strings(obj, *, strict=None, context=None, by_alias=None, by_name=None)[source]
Validate the given object with string data against the Pydantic model.
- Parameters:
obj (Any) – The object containing string data to validate.
strict (bool | None) – Whether to enforce types strictly.
context (Any | None) – Extra variables to pass to the validator.
by_alias (bool | None) – Whether to use the field’s alias when validating against the provided input data.
by_name (bool | None) – Whether to use the field’s name when validating against the provided input data.
- Returns:
The validated Pydantic model.
- Return type:
- classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
- classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
- class langgraph_agent_toolkit.schema.UserInput(*, input, model_name=None, model_provider=None, model_config_key=None, thread_id=None, user_id=None, agent_config={}, recursion_limit=None)[source][source]
Bases:
BaseModelBasic user input for the agent.
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- Parameters:
- __init__(**data)[source]
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- Parameters:
data (Any)
- Return type:
None
- copy(*, include=None, exclude=None, update=None, deep=False)[source]
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Parameters:
include (AbstractSetIntStr | MappingIntStrAny | None) – Optional set or mapping specifying which fields to include in the copied model.
exclude (AbstractSetIntStr | MappingIntStrAny | None) – Optional set or mapping specifying which fields to exclude in the copied model.
update (Dict[str, Any] | None) – Optional dictionary of field-value pairs to override field values in the copied model.
deep (bool) – If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- Return type:
Self
- dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
- Parameters:
include (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None)
exclude (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None)
by_alias (bool)
exclude_unset (bool)
exclude_defaults (bool)
exclude_none (bool)
- Return type:
- json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
- Parameters:
include (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None)
exclude (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None)
by_alias (bool)
exclude_unset (bool)
exclude_defaults (bool)
exclude_none (bool)
models_as_dict (bool)
dumps_kwargs (Any)
- Return type:
- model_computed_fields = {}
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- classmethod model_construct(_fields_set=None, **values)[source]
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.
- !!! note
model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == ‘allow’, then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == ‘ignore’ (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == ‘forbid’ does not result in an error if extra values are passed, but they will be ignored.
- Parameters:
_fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.
values (Any) – Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- Return type:
- model_copy(*, update=None, deep=False)[source]
- !!! abstract “Usage Documentation”
[model_copy](../concepts/serialization.md#model_copy)
Returns a copy of the model.
- !!! note
The underlying instance’s [__dict__][object.__dict__] attribute is copied. This might have unexpected side effects if you store anything in it, on top of the model fields (e.g. the value of [cached properties][functools.cached_property]).
- model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=None, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, fallback=None, serialize_as_any=False)[source]
- !!! abstract “Usage Documentation”
[model_dump](../concepts/serialization.md#modelmodel_dump)
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Parameters:
mode (Literal['json', 'python'] | str) – The mode in which to_python should run. If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None) – A set of fields to include in the output.
exclude (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None) – A set of fields to exclude from the output.
context (Any | None) – Additional context to pass to the serializer.
by_alias (bool | None) – Whether to use the field’s alias in the dictionary key if defined.
exclude_unset (bool) – Whether to exclude fields that have not been explicitly set.
exclude_defaults (bool) – Whether to exclude fields that are set to their default value.
exclude_none (bool) – Whether to exclude fields that have a value of None.
round_trip (bool) – If True, dumped values should be valid as input for non-idempotent types such as Json[T].
warnings (bool | Literal['none', 'warn', 'error']) – How to handle serialization errors. False/”none” ignores them, True/”warn” logs errors, “error” raises a [PydanticSerializationError][pydantic_core.PydanticSerializationError].
fallback (Callable[[Any], Any] | None) – A function to call when an unknown value is encountered. If not provided, a [PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised.
serialize_as_any (bool) – Whether to serialize fields with duck-typing serialization behavior.
- Returns:
A dictionary representation of the model.
- Return type:
- model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=None, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, fallback=None, serialize_as_any=False)[source]
- !!! abstract “Usage Documentation”
[model_dump_json](../concepts/serialization.md#modelmodel_dump_json)
Generates a JSON representation of the model using Pydantic’s to_json method.
- Parameters:
indent (int | None) – Indentation to use in the JSON output. If None is passed, the output will be compact.
include (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None) – Field(s) to include in the JSON output.
exclude (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None) – Field(s) to exclude from the JSON output.
context (Any | None) – Additional context to pass to the serializer.
by_alias (bool | None) – Whether to serialize using field aliases.
exclude_unset (bool) – Whether to exclude fields that have not been explicitly set.
exclude_defaults (bool) – Whether to exclude fields that are set to their default value.
exclude_none (bool) – Whether to exclude fields that have a value of None.
round_trip (bool) – If True, dumped values should be valid as input for non-idempotent types such as Json[T].
warnings (bool | Literal['none', 'warn', 'error']) – How to handle serialization errors. False/”none” ignores them, True/”warn” logs errors, “error” raises a [PydanticSerializationError][pydantic_core.PydanticSerializationError].
fallback (Callable[[Any], Any] | None) – A function to call when an unknown value is encountered. If not provided, a [PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised.
serialize_as_any (bool) – Whether to serialize fields with duck-typing serialization behavior.
- Returns:
A JSON string representation of the model.
- Return type:
- property model_extra: dict[str, Any] | None
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- model_fields = {'agent_config': FieldInfo(annotation=dict[str, Any], required=False, default={}, description='Additional configuration to pass through to the agent', examples=[{'checkpointer_params': {'k': 6}, 'temperature': 0.0, 'max_tokens': 2048, 'top_p': 0.95, 'streaming': True}]), 'input': FieldInfo(annotation=UserComplexInput, required=True, description='Structured input from the user, including a message and optional dynamic fields.', examples=[{'message': 'What is the weather in Tokyo?'}]), 'model_config_key': FieldInfo(annotation=Union[str, NoneType], required=False, default=None, title='Model Configuration Key', description='Key for predefined model configuration in MODEL_CONFIGS.', examples=['gpt4o', 'gemini']), 'model_name': FieldInfo(annotation=Union[str, NoneType], required=False, default=None, title='Model', description='LLM Model Name to use for the agent.', examples=['gpt-3.5-turbo', 'gpt-4o']), 'model_provider': FieldInfo(annotation=Union[str, NoneType], required=False, default=None, title='Model Provider', description='LLM Model Provider to use for the agent.', examples=['openai', 'anthropic']), 'recursion_limit': FieldInfo(annotation=Union[int, NoneType], required=False, default=None, description='Recursion limit for the agent.', examples=[25]), 'thread_id': FieldInfo(annotation=Union[str, NoneType], required=False, default=None, description='Thread ID to persist and continue a multi-turn conversation.', examples=['847c6285-8fc9-4560-a83f-4e6285809254']), 'user_id': FieldInfo(annotation=Union[str, NoneType], required=False, default=None, description='User ID to persist in observability platform and share long-term memory.', examples=['521c0a60-ea75-43fa-a793-a4cf11e013ae'])}
- property model_fields_set: set[str]
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- classmethod model_json_schema(by_alias=True, ref_template=DEFAULT_REF_TEMPLATE, schema_generator=GenerateJsonSchema, mode='validation')[source]
Generates a JSON schema for a model class.
- Parameters:
by_alias (bool) – Whether to use attribute aliases or not.
ref_template (str) – The reference template.
schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications
mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- Return type:
- classmethod model_parametrized_name(params)[source]
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Parameters:
params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError – Raised when trying to generate concrete names for non-generic models.
- Return type:
- model_post_init(context, /)[source]
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- Parameters:
context (Any)
- Return type:
None
- classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Parameters:
force (bool) – Whether to force the rebuilding of the model schema, defaults to False.
raise_errors (bool) – Whether to raise errors, defaults to True.
_parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.
_types_namespace (MappingNamespace | None) – The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- Return type:
bool | None
- classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None, by_alias=None, by_name=None)[source]
Validate a pydantic model instance.
- Parameters:
obj (Any) – The object to validate.
strict (bool | None) – Whether to enforce types strictly.
from_attributes (bool | None) – Whether to extract data from object attributes.
context (Any | None) – Additional context to pass to the validator.
by_alias (bool | None) – Whether to use the field’s alias when validating against the provided input data.
by_name (bool | None) – Whether to use the field’s name when validating against the provided input data.
- Raises:
ValidationError – If the object could not be validated.
- Returns:
The validated model instance.
- Return type:
- classmethod model_validate_json(json_data, *, strict=None, context=None, by_alias=None, by_name=None)[source]
- !!! abstract “Usage Documentation”
[JSON Parsing](../concepts/json.md#json-parsing)
Validate the given JSON data against the Pydantic model.
- Parameters:
json_data (str | bytes | bytearray) – The JSON data to validate.
strict (bool | None) – Whether to enforce types strictly.
context (Any | None) – Extra variables to pass to the validator.
by_alias (bool | None) – Whether to use the field’s alias when validating against the provided input data.
by_name (bool | None) – Whether to use the field’s name when validating against the provided input data.
- Returns:
The validated Pydantic model.
- Raises:
ValidationError – If json_data is not a JSON string or the object could not be validated.
- Return type:
- classmethod model_validate_strings(obj, *, strict=None, context=None, by_alias=None, by_name=None)[source]
Validate the given object with string data against the Pydantic model.
- Parameters:
obj (Any) – The object containing string data to validate.
strict (bool | None) – Whether to enforce types strictly.
context (Any | None) – Extra variables to pass to the validator.
by_alias (bool | None) – Whether to use the field’s alias when validating against the provided input data.
by_name (bool | None) – Whether to use the field’s name when validating against the provided input data.
- Returns:
The validated Pydantic model.
- Return type:
- classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
- classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
- classmethod schema_json(*, by_alias=True, ref_template=DEFAULT_REF_TEMPLATE, **dumps_kwargs)[source]
- input: UserComplexInput
- class langgraph_agent_toolkit.schema.ChatMessage(*, type, content, tool_calls=[], tool_call_id=None, run_id=None, response_metadata={}, custom_data={})[source][source]
Bases:
BaseModelMessage in a chat.
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- Parameters:
- __init__(**data)[source]
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- Parameters:
data (Any)
- Return type:
None
- copy(*, include=None, exclude=None, update=None, deep=False)[source]
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Parameters:
include (AbstractSetIntStr | MappingIntStrAny | None) – Optional set or mapping specifying which fields to include in the copied model.
exclude (AbstractSetIntStr | MappingIntStrAny | None) – Optional set or mapping specifying which fields to exclude in the copied model.
update (Dict[str, Any] | None) – Optional dictionary of field-value pairs to override field values in the copied model.
deep (bool) – If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- Return type:
Self
- dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
- Parameters:
include (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None)
exclude (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None)
by_alias (bool)
exclude_unset (bool)
exclude_defaults (bool)
exclude_none (bool)
- Return type:
- json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
- Parameters:
include (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None)
exclude (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None)
by_alias (bool)
exclude_unset (bool)
exclude_defaults (bool)
exclude_none (bool)
models_as_dict (bool)
dumps_kwargs (Any)
- Return type:
- model_computed_fields = {}
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- classmethod model_construct(_fields_set=None, **values)[source]
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.
- !!! note
model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == ‘allow’, then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == ‘ignore’ (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == ‘forbid’ does not result in an error if extra values are passed, but they will be ignored.
- Parameters:
_fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.
values (Any) – Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- Return type:
- model_copy(*, update=None, deep=False)[source]
- !!! abstract “Usage Documentation”
[model_copy](../concepts/serialization.md#model_copy)
Returns a copy of the model.
- !!! note
The underlying instance’s [__dict__][object.__dict__] attribute is copied. This might have unexpected side effects if you store anything in it, on top of the model fields (e.g. the value of [cached properties][functools.cached_property]).
- model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=None, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, fallback=None, serialize_as_any=False)[source]
- !!! abstract “Usage Documentation”
[model_dump](../concepts/serialization.md#modelmodel_dump)
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Parameters:
mode (Literal['json', 'python'] | str) – The mode in which to_python should run. If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None) – A set of fields to include in the output.
exclude (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None) – A set of fields to exclude from the output.
context (Any | None) – Additional context to pass to the serializer.
by_alias (bool | None) – Whether to use the field’s alias in the dictionary key if defined.
exclude_unset (bool) – Whether to exclude fields that have not been explicitly set.
exclude_defaults (bool) – Whether to exclude fields that are set to their default value.
exclude_none (bool) – Whether to exclude fields that have a value of None.
round_trip (bool) – If True, dumped values should be valid as input for non-idempotent types such as Json[T].
warnings (bool | Literal['none', 'warn', 'error']) – How to handle serialization errors. False/”none” ignores them, True/”warn” logs errors, “error” raises a [PydanticSerializationError][pydantic_core.PydanticSerializationError].
fallback (Callable[[Any], Any] | None) – A function to call when an unknown value is encountered. If not provided, a [PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised.
serialize_as_any (bool) – Whether to serialize fields with duck-typing serialization behavior.
- Returns:
A dictionary representation of the model.
- Return type:
- model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=None, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, fallback=None, serialize_as_any=False)[source]
- !!! abstract “Usage Documentation”
[model_dump_json](../concepts/serialization.md#modelmodel_dump_json)
Generates a JSON representation of the model using Pydantic’s to_json method.
- Parameters:
indent (int | None) – Indentation to use in the JSON output. If None is passed, the output will be compact.
include (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None) – Field(s) to include in the JSON output.
exclude (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None) – Field(s) to exclude from the JSON output.
context (Any | None) – Additional context to pass to the serializer.
by_alias (bool | None) – Whether to serialize using field aliases.
exclude_unset (bool) – Whether to exclude fields that have not been explicitly set.
exclude_defaults (bool) – Whether to exclude fields that are set to their default value.
exclude_none (bool) – Whether to exclude fields that have a value of None.
round_trip (bool) – If True, dumped values should be valid as input for non-idempotent types such as Json[T].
warnings (bool | Literal['none', 'warn', 'error']) – How to handle serialization errors. False/”none” ignores them, True/”warn” logs errors, “error” raises a [PydanticSerializationError][pydantic_core.PydanticSerializationError].
fallback (Callable[[Any], Any] | None) – A function to call when an unknown value is encountered. If not provided, a [PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised.
serialize_as_any (bool) – Whether to serialize fields with duck-typing serialization behavior.
- Returns:
A JSON string representation of the model.
- Return type:
- property model_extra: dict[str, Any] | None
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- model_fields = {'content': FieldInfo(annotation=Union[str, Dict[str, Any], List[Union[str, Dict[str, Any]]]], required=True, description='Content of the message.', examples=['Hello, world!']), 'custom_data': FieldInfo(annotation=dict[str, Any], required=False, default={}, description='Custom message data.'), 'response_metadata': FieldInfo(annotation=dict[str, Any], required=False, default={}, description='Response metadata. For example: response headers, logprobs, token counts.'), 'run_id': FieldInfo(annotation=Union[str, NoneType], required=False, default=None, description='Run ID of the message.', examples=['847c6285-8fc9-4560-a83f-4e6285809254']), 'tool_call_id': FieldInfo(annotation=Union[str, NoneType], required=False, default=None, description='Tool call that this message is responding to.', examples=['call_Jja7J89XsjrOLA5r!MEOW!SL']), 'tool_calls': FieldInfo(annotation=list[ToolCall], required=False, default=[], description='Tool calls in the message.'), 'type': FieldInfo(annotation=Literal['human', 'ai', 'tool', 'custom'], required=True, description='Role of the message.', examples=['human', 'ai', 'tool', 'custom'])}
- property model_fields_set: set[str]
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- classmethod model_json_schema(by_alias=True, ref_template=DEFAULT_REF_TEMPLATE, schema_generator=GenerateJsonSchema, mode='validation')[source]
Generates a JSON schema for a model class.
- Parameters:
by_alias (bool) – Whether to use attribute aliases or not.
ref_template (str) – The reference template.
schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications
mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- Return type:
- classmethod model_parametrized_name(params)[source]
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Parameters:
params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError – Raised when trying to generate concrete names for non-generic models.
- Return type:
- model_post_init(context, /)[source]
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- Parameters:
context (Any)
- Return type:
None
- classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Parameters:
force (bool) – Whether to force the rebuilding of the model schema, defaults to False.
raise_errors (bool) – Whether to raise errors, defaults to True.
_parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.
_types_namespace (MappingNamespace | None) – The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- Return type:
bool | None
- classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None, by_alias=None, by_name=None)[source]
Validate a pydantic model instance.
- Parameters:
obj (Any) – The object to validate.
strict (bool | None) – Whether to enforce types strictly.
from_attributes (bool | None) – Whether to extract data from object attributes.
context (Any | None) – Additional context to pass to the validator.
by_alias (bool | None) – Whether to use the field’s alias when validating against the provided input data.
by_name (bool | None) – Whether to use the field’s name when validating against the provided input data.
- Raises:
ValidationError – If the object could not be validated.
- Returns:
The validated model instance.
- Return type:
- classmethod model_validate_json(json_data, *, strict=None, context=None, by_alias=None, by_name=None)[source]
- !!! abstract “Usage Documentation”
[JSON Parsing](../concepts/json.md#json-parsing)
Validate the given JSON data against the Pydantic model.
- Parameters:
json_data (str | bytes | bytearray) – The JSON data to validate.
strict (bool | None) – Whether to enforce types strictly.
context (Any | None) – Extra variables to pass to the validator.
by_alias (bool | None) – Whether to use the field’s alias when validating against the provided input data.
by_name (bool | None) – Whether to use the field’s name when validating against the provided input data.
- Returns:
The validated Pydantic model.
- Raises:
ValidationError – If json_data is not a JSON string or the object could not be validated.
- Return type:
- classmethod model_validate_strings(obj, *, strict=None, context=None, by_alias=None, by_name=None)[source]
Validate the given object with string data against the Pydantic model.
- Parameters:
obj (Any) – The object containing string data to validate.
strict (bool | None) – Whether to enforce types strictly.
context (Any | None) – Extra variables to pass to the validator.
by_alias (bool | None) – Whether to use the field’s alias when validating against the provided input data.
by_name (bool | None) – Whether to use the field’s name when validating against the provided input data.
- Returns:
The validated Pydantic model.
- Return type:
- classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
- classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
- class langgraph_agent_toolkit.schema.ClearHistoryInput(*, thread_id=None, user_id=None)[source][source]
Bases:
BaseModelInput for clearing messages from the chat history.
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- __init__(**data)[source]
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- Parameters:
data (Any)
- Return type:
None
- copy(*, include=None, exclude=None, update=None, deep=False)[source]
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Parameters:
include (AbstractSetIntStr | MappingIntStrAny | None) – Optional set or mapping specifying which fields to include in the copied model.
exclude (AbstractSetIntStr | MappingIntStrAny | None) – Optional set or mapping specifying which fields to exclude in the copied model.
update (Dict[str, Any] | None) – Optional dictionary of field-value pairs to override field values in the copied model.
deep (bool) – If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- Return type:
Self
- dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
- Parameters:
include (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None)
exclude (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None)
by_alias (bool)
exclude_unset (bool)
exclude_defaults (bool)
exclude_none (bool)
- Return type:
- json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
- Parameters:
include (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None)
exclude (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None)
by_alias (bool)
exclude_unset (bool)
exclude_defaults (bool)
exclude_none (bool)
models_as_dict (bool)
dumps_kwargs (Any)
- Return type:
- model_computed_fields = {}
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- classmethod model_construct(_fields_set=None, **values)[source]
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.
- !!! note
model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == ‘allow’, then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == ‘ignore’ (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == ‘forbid’ does not result in an error if extra values are passed, but they will be ignored.
- Parameters:
_fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.
values (Any) – Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- Return type:
- model_copy(*, update=None, deep=False)[source]
- !!! abstract “Usage Documentation”
[model_copy](../concepts/serialization.md#model_copy)
Returns a copy of the model.
- !!! note
The underlying instance’s [__dict__][object.__dict__] attribute is copied. This might have unexpected side effects if you store anything in it, on top of the model fields (e.g. the value of [cached properties][functools.cached_property]).
- model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=None, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, fallback=None, serialize_as_any=False)[source]
- !!! abstract “Usage Documentation”
[model_dump](../concepts/serialization.md#modelmodel_dump)
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Parameters:
mode (Literal['json', 'python'] | str) – The mode in which to_python should run. If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None) – A set of fields to include in the output.
exclude (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None) – A set of fields to exclude from the output.
context (Any | None) – Additional context to pass to the serializer.
by_alias (bool | None) – Whether to use the field’s alias in the dictionary key if defined.
exclude_unset (bool) – Whether to exclude fields that have not been explicitly set.
exclude_defaults (bool) – Whether to exclude fields that are set to their default value.
exclude_none (bool) – Whether to exclude fields that have a value of None.
round_trip (bool) – If True, dumped values should be valid as input for non-idempotent types such as Json[T].
warnings (bool | Literal['none', 'warn', 'error']) – How to handle serialization errors. False/”none” ignores them, True/”warn” logs errors, “error” raises a [PydanticSerializationError][pydantic_core.PydanticSerializationError].
fallback (Callable[[Any], Any] | None) – A function to call when an unknown value is encountered. If not provided, a [PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised.
serialize_as_any (bool) – Whether to serialize fields with duck-typing serialization behavior.
- Returns:
A dictionary representation of the model.
- Return type:
- model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=None, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, fallback=None, serialize_as_any=False)[source]
- !!! abstract “Usage Documentation”
[model_dump_json](../concepts/serialization.md#modelmodel_dump_json)
Generates a JSON representation of the model using Pydantic’s to_json method.
- Parameters:
indent (int | None) – Indentation to use in the JSON output. If None is passed, the output will be compact.
include (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None) – Field(s) to include in the JSON output.
exclude (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None) – Field(s) to exclude from the JSON output.
context (Any | None) – Additional context to pass to the serializer.
by_alias (bool | None) – Whether to serialize using field aliases.
exclude_unset (bool) – Whether to exclude fields that have not been explicitly set.
exclude_defaults (bool) – Whether to exclude fields that are set to their default value.
exclude_none (bool) – Whether to exclude fields that have a value of None.
round_trip (bool) – If True, dumped values should be valid as input for non-idempotent types such as Json[T].
warnings (bool | Literal['none', 'warn', 'error']) – How to handle serialization errors. False/”none” ignores them, True/”warn” logs errors, “error” raises a [PydanticSerializationError][pydantic_core.PydanticSerializationError].
fallback (Callable[[Any], Any] | None) – A function to call when an unknown value is encountered. If not provided, a [PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised.
serialize_as_any (bool) – Whether to serialize fields with duck-typing serialization behavior.
- Returns:
A JSON string representation of the model.
- Return type:
- property model_extra: dict[str, Any] | None
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- model_fields = {'thread_id': FieldInfo(annotation=Union[str, NoneType], required=False, default=None, description='Thread ID to persist and continue a multi-turn conversation.', examples=['847c6285-8fc9-4560-a83f-4e6285809254']), 'user_id': FieldInfo(annotation=Union[str, NoneType], required=False, default=None, description='User ID to persist in observability platform and share long-term memory.', examples=['521c0a60-ea75-43fa-a793-a4cf11e013ae'])}
- property model_fields_set: set[str]
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- classmethod model_json_schema(by_alias=True, ref_template=DEFAULT_REF_TEMPLATE, schema_generator=GenerateJsonSchema, mode='validation')[source]
Generates a JSON schema for a model class.
- Parameters:
by_alias (bool) – Whether to use attribute aliases or not.
ref_template (str) – The reference template.
schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications
mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- Return type:
- classmethod model_parametrized_name(params)[source]
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Parameters:
params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError – Raised when trying to generate concrete names for non-generic models.
- Return type:
- model_post_init(context, /)[source]
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- Parameters:
context (Any)
- Return type:
None
- classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Parameters:
force (bool) – Whether to force the rebuilding of the model schema, defaults to False.
raise_errors (bool) – Whether to raise errors, defaults to True.
_parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.
_types_namespace (MappingNamespace | None) – The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- Return type:
bool | None
- classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None, by_alias=None, by_name=None)[source]
Validate a pydantic model instance.
- Parameters:
obj (Any) – The object to validate.
strict (bool | None) – Whether to enforce types strictly.
from_attributes (bool | None) – Whether to extract data from object attributes.
context (Any | None) – Additional context to pass to the validator.
by_alias (bool | None) – Whether to use the field’s alias when validating against the provided input data.
by_name (bool | None) – Whether to use the field’s name when validating against the provided input data.
- Raises:
ValidationError – If the object could not be validated.
- Returns:
The validated model instance.
- Return type:
- classmethod model_validate_json(json_data, *, strict=None, context=None, by_alias=None, by_name=None)[source]
- !!! abstract “Usage Documentation”
[JSON Parsing](../concepts/json.md#json-parsing)
Validate the given JSON data against the Pydantic model.
- Parameters:
json_data (str | bytes | bytearray) – The JSON data to validate.
strict (bool | None) – Whether to enforce types strictly.
context (Any | None) – Extra variables to pass to the validator.
by_alias (bool | None) – Whether to use the field’s alias when validating against the provided input data.
by_name (bool | None) – Whether to use the field’s name when validating against the provided input data.
- Returns:
The validated Pydantic model.
- Raises:
ValidationError – If json_data is not a JSON string or the object could not be validated.
- Return type:
- classmethod model_validate_strings(obj, *, strict=None, context=None, by_alias=None, by_name=None)[source]
Validate the given object with string data against the Pydantic model.
- Parameters:
obj (Any) – The object containing string data to validate.
strict (bool | None) – Whether to enforce types strictly.
context (Any | None) – Extra variables to pass to the validator.
by_alias (bool | None) – Whether to use the field’s alias when validating against the provided input data.
by_name (bool | None) – Whether to use the field’s name when validating against the provided input data.
- Returns:
The validated Pydantic model.
- Return type:
- classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
- classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
- class langgraph_agent_toolkit.schema.ClearHistoryResponse(*, status='success', thread_id=None, user_id=None, message='Messages cleared successfully.')[source][source]
Bases:
BaseModelResponse after clearing messages from the chat history.
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- __init__(**data)[source]
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- Parameters:
data (Any)
- Return type:
None
- copy(*, include=None, exclude=None, update=None, deep=False)[source]
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Parameters:
include (AbstractSetIntStr | MappingIntStrAny | None) – Optional set or mapping specifying which fields to include in the copied model.
exclude (AbstractSetIntStr | MappingIntStrAny | None) – Optional set or mapping specifying which fields to exclude in the copied model.
update (Dict[str, Any] | None) – Optional dictionary of field-value pairs to override field values in the copied model.
deep (bool) – If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- Return type:
Self
- dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
- Parameters:
include (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None)
exclude (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None)
by_alias (bool)
exclude_unset (bool)
exclude_defaults (bool)
exclude_none (bool)
- Return type:
- json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
- Parameters:
include (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None)
exclude (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None)
by_alias (bool)
exclude_unset (bool)
exclude_defaults (bool)
exclude_none (bool)
models_as_dict (bool)
dumps_kwargs (Any)
- Return type:
- model_computed_fields = {}
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- classmethod model_construct(_fields_set=None, **values)[source]
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.
- !!! note
model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == ‘allow’, then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == ‘ignore’ (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == ‘forbid’ does not result in an error if extra values are passed, but they will be ignored.
- Parameters:
_fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.
values (Any) – Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- Return type:
- model_copy(*, update=None, deep=False)[source]
- !!! abstract “Usage Documentation”
[model_copy](../concepts/serialization.md#model_copy)
Returns a copy of the model.
- !!! note
The underlying instance’s [__dict__][object.__dict__] attribute is copied. This might have unexpected side effects if you store anything in it, on top of the model fields (e.g. the value of [cached properties][functools.cached_property]).
- model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=None, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, fallback=None, serialize_as_any=False)[source]
- !!! abstract “Usage Documentation”
[model_dump](../concepts/serialization.md#modelmodel_dump)
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Parameters:
mode (Literal['json', 'python'] | str) – The mode in which to_python should run. If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None) – A set of fields to include in the output.
exclude (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None) – A set of fields to exclude from the output.
context (Any | None) – Additional context to pass to the serializer.
by_alias (bool | None) – Whether to use the field’s alias in the dictionary key if defined.
exclude_unset (bool) – Whether to exclude fields that have not been explicitly set.
exclude_defaults (bool) – Whether to exclude fields that are set to their default value.
exclude_none (bool) – Whether to exclude fields that have a value of None.
round_trip (bool) – If True, dumped values should be valid as input for non-idempotent types such as Json[T].
warnings (bool | Literal['none', 'warn', 'error']) – How to handle serialization errors. False/”none” ignores them, True/”warn” logs errors, “error” raises a [PydanticSerializationError][pydantic_core.PydanticSerializationError].
fallback (Callable[[Any], Any] | None) – A function to call when an unknown value is encountered. If not provided, a [PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised.
serialize_as_any (bool) – Whether to serialize fields with duck-typing serialization behavior.
- Returns:
A dictionary representation of the model.
- Return type:
- model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=None, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, fallback=None, serialize_as_any=False)[source]
- !!! abstract “Usage Documentation”
[model_dump_json](../concepts/serialization.md#modelmodel_dump_json)
Generates a JSON representation of the model using Pydantic’s to_json method.
- Parameters:
indent (int | None) – Indentation to use in the JSON output. If None is passed, the output will be compact.
include (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None) – Field(s) to include in the JSON output.
exclude (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None) – Field(s) to exclude from the JSON output.
context (Any | None) – Additional context to pass to the serializer.
by_alias (bool | None) – Whether to serialize using field aliases.
exclude_unset (bool) – Whether to exclude fields that have not been explicitly set.
exclude_defaults (bool) – Whether to exclude fields that are set to their default value.
exclude_none (bool) – Whether to exclude fields that have a value of None.
round_trip (bool) – If True, dumped values should be valid as input for non-idempotent types such as Json[T].
warnings (bool | Literal['none', 'warn', 'error']) – How to handle serialization errors. False/”none” ignores them, True/”warn” logs errors, “error” raises a [PydanticSerializationError][pydantic_core.PydanticSerializationError].
fallback (Callable[[Any], Any] | None) – A function to call when an unknown value is encountered. If not provided, a [PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised.
serialize_as_any (bool) – Whether to serialize fields with duck-typing serialization behavior.
- Returns:
A JSON string representation of the model.
- Return type:
- property model_extra: dict[str, Any] | None
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- model_fields = {'message': FieldInfo(annotation=str, required=False, default='Messages cleared successfully.', description='Descriptive message about the operation.'), 'status': FieldInfo(annotation=Literal['success'], required=False, default='success'), 'thread_id': FieldInfo(annotation=Union[str, NoneType], required=False, default=None, description='Thread ID for which the messages were cleared.', examples=['847c6285-8fc9-4560-a83f-4e6285809254']), 'user_id': FieldInfo(annotation=Union[str, NoneType], required=False, default=None, description='User ID associated with the operation.', examples=['521c0a60-ea75-43fa-a793-a4cf11e013ae'])}
- property model_fields_set: set[str]
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- classmethod model_json_schema(by_alias=True, ref_template=DEFAULT_REF_TEMPLATE, schema_generator=GenerateJsonSchema, mode='validation')[source]
Generates a JSON schema for a model class.
- Parameters:
by_alias (bool) – Whether to use attribute aliases or not.
ref_template (str) – The reference template.
schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications
mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- Return type:
- classmethod model_parametrized_name(params)[source]
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Parameters:
params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError – Raised when trying to generate concrete names for non-generic models.
- Return type:
- model_post_init(context, /)[source]
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- Parameters:
context (Any)
- Return type:
None
- classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Parameters:
force (bool) – Whether to force the rebuilding of the model schema, defaults to False.
raise_errors (bool) – Whether to raise errors, defaults to True.
_parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.
_types_namespace (MappingNamespace | None) – The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- Return type:
bool | None
- classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None, by_alias=None, by_name=None)[source]
Validate a pydantic model instance.
- Parameters:
obj (Any) – The object to validate.
strict (bool | None) – Whether to enforce types strictly.
from_attributes (bool | None) – Whether to extract data from object attributes.
context (Any | None) – Additional context to pass to the validator.
by_alias (bool | None) – Whether to use the field’s alias when validating against the provided input data.
by_name (bool | None) – Whether to use the field’s name when validating against the provided input data.
- Raises:
ValidationError – If the object could not be validated.
- Returns:
The validated model instance.
- Return type:
- classmethod model_validate_json(json_data, *, strict=None, context=None, by_alias=None, by_name=None)[source]
- !!! abstract “Usage Documentation”
[JSON Parsing](../concepts/json.md#json-parsing)
Validate the given JSON data against the Pydantic model.
- Parameters:
json_data (str | bytes | bytearray) – The JSON data to validate.
strict (bool | None) – Whether to enforce types strictly.
context (Any | None) – Extra variables to pass to the validator.
by_alias (bool | None) – Whether to use the field’s alias when validating against the provided input data.
by_name (bool | None) – Whether to use the field’s name when validating against the provided input data.
- Returns:
The validated Pydantic model.
- Raises:
ValidationError – If json_data is not a JSON string or the object could not be validated.
- Return type:
- classmethod model_validate_strings(obj, *, strict=None, context=None, by_alias=None, by_name=None)[source]
Validate the given object with string data against the Pydantic model.
- Parameters:
obj (Any) – The object containing string data to validate.
strict (bool | None) – Whether to enforce types strictly.
context (Any | None) – Extra variables to pass to the validator.
by_alias (bool | None) – Whether to use the field’s alias when validating against the provided input data.
by_name (bool | None) – Whether to use the field’s name when validating against the provided input data.
- Returns:
The validated Pydantic model.
- Return type:
- classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
- classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
- class langgraph_agent_toolkit.schema.ServiceMetadata(*, agents, default_agent)[source][source]
Bases:
BaseModelMetadata about the service including available agents and models.
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- __init__(**data)[source]
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- Parameters:
data (Any)
- Return type:
None
- copy(*, include=None, exclude=None, update=None, deep=False)[source]
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Parameters:
include (AbstractSetIntStr | MappingIntStrAny | None) – Optional set or mapping specifying which fields to include in the copied model.
exclude (AbstractSetIntStr | MappingIntStrAny | None) – Optional set or mapping specifying which fields to exclude in the copied model.
update (Dict[str, Any] | None) – Optional dictionary of field-value pairs to override field values in the copied model.
deep (bool) – If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- Return type:
Self
- dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
- Parameters:
include (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None)
exclude (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None)
by_alias (bool)
exclude_unset (bool)
exclude_defaults (bool)
exclude_none (bool)
- Return type:
- json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
- Parameters:
include (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None)
exclude (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None)
by_alias (bool)
exclude_unset (bool)
exclude_defaults (bool)
exclude_none (bool)
models_as_dict (bool)
dumps_kwargs (Any)
- Return type:
- model_computed_fields = {}
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- classmethod model_construct(_fields_set=None, **values)[source]
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.
- !!! note
model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == ‘allow’, then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == ‘ignore’ (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == ‘forbid’ does not result in an error if extra values are passed, but they will be ignored.
- Parameters:
_fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.
values (Any) – Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- Return type:
- model_copy(*, update=None, deep=False)[source]
- !!! abstract “Usage Documentation”
[model_copy](../concepts/serialization.md#model_copy)
Returns a copy of the model.
- !!! note
The underlying instance’s [__dict__][object.__dict__] attribute is copied. This might have unexpected side effects if you store anything in it, on top of the model fields (e.g. the value of [cached properties][functools.cached_property]).
- model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=None, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, fallback=None, serialize_as_any=False)[source]
- !!! abstract “Usage Documentation”
[model_dump](../concepts/serialization.md#modelmodel_dump)
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Parameters:
mode (Literal['json', 'python'] | str) – The mode in which to_python should run. If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None) – A set of fields to include in the output.
exclude (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None) – A set of fields to exclude from the output.
context (Any | None) – Additional context to pass to the serializer.
by_alias (bool | None) – Whether to use the field’s alias in the dictionary key if defined.
exclude_unset (bool) – Whether to exclude fields that have not been explicitly set.
exclude_defaults (bool) – Whether to exclude fields that are set to their default value.
exclude_none (bool) – Whether to exclude fields that have a value of None.
round_trip (bool) – If True, dumped values should be valid as input for non-idempotent types such as Json[T].
warnings (bool | Literal['none', 'warn', 'error']) – How to handle serialization errors. False/”none” ignores them, True/”warn” logs errors, “error” raises a [PydanticSerializationError][pydantic_core.PydanticSerializationError].
fallback (Callable[[Any], Any] | None) – A function to call when an unknown value is encountered. If not provided, a [PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised.
serialize_as_any (bool) – Whether to serialize fields with duck-typing serialization behavior.
- Returns:
A dictionary representation of the model.
- Return type:
- model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=None, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, fallback=None, serialize_as_any=False)[source]
- !!! abstract “Usage Documentation”
[model_dump_json](../concepts/serialization.md#modelmodel_dump_json)
Generates a JSON representation of the model using Pydantic’s to_json method.
- Parameters:
indent (int | None) – Indentation to use in the JSON output. If None is passed, the output will be compact.
include (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None) – Field(s) to include in the JSON output.
exclude (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None) – Field(s) to exclude from the JSON output.
context (Any | None) – Additional context to pass to the serializer.
by_alias (bool | None) – Whether to serialize using field aliases.
exclude_unset (bool) – Whether to exclude fields that have not been explicitly set.
exclude_defaults (bool) – Whether to exclude fields that are set to their default value.
exclude_none (bool) – Whether to exclude fields that have a value of None.
round_trip (bool) – If True, dumped values should be valid as input for non-idempotent types such as Json[T].
warnings (bool | Literal['none', 'warn', 'error']) – How to handle serialization errors. False/”none” ignores them, True/”warn” logs errors, “error” raises a [PydanticSerializationError][pydantic_core.PydanticSerializationError].
fallback (Callable[[Any], Any] | None) – A function to call when an unknown value is encountered. If not provided, a [PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised.
serialize_as_any (bool) – Whether to serialize fields with duck-typing serialization behavior.
- Returns:
A JSON string representation of the model.
- Return type:
- property model_extra: dict[str, Any] | None
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- model_fields = {'agents': FieldInfo(annotation=list[AgentInfo], required=True, description='List of available agents.'), 'default_agent': FieldInfo(annotation=str, required=True, description='Default agent used when none is specified.', examples=['react-agent'])}
- property model_fields_set: set[str]
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- classmethod model_json_schema(by_alias=True, ref_template=DEFAULT_REF_TEMPLATE, schema_generator=GenerateJsonSchema, mode='validation')[source]
Generates a JSON schema for a model class.
- Parameters:
by_alias (bool) – Whether to use attribute aliases or not.
ref_template (str) – The reference template.
schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications
mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- Return type:
- classmethod model_parametrized_name(params)[source]
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Parameters:
params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError – Raised when trying to generate concrete names for non-generic models.
- Return type:
- model_post_init(context, /)[source]
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- Parameters:
context (Any)
- Return type:
None
- classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Parameters:
force (bool) – Whether to force the rebuilding of the model schema, defaults to False.
raise_errors (bool) – Whether to raise errors, defaults to True.
_parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.
_types_namespace (MappingNamespace | None) – The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- Return type:
bool | None
- classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None, by_alias=None, by_name=None)[source]
Validate a pydantic model instance.
- Parameters:
obj (Any) – The object to validate.
strict (bool | None) – Whether to enforce types strictly.
from_attributes (bool | None) – Whether to extract data from object attributes.
context (Any | None) – Additional context to pass to the validator.
by_alias (bool | None) – Whether to use the field’s alias when validating against the provided input data.
by_name (bool | None) – Whether to use the field’s name when validating against the provided input data.
- Raises:
ValidationError – If the object could not be validated.
- Returns:
The validated model instance.
- Return type:
- classmethod model_validate_json(json_data, *, strict=None, context=None, by_alias=None, by_name=None)[source]
- !!! abstract “Usage Documentation”
[JSON Parsing](../concepts/json.md#json-parsing)
Validate the given JSON data against the Pydantic model.
- Parameters:
json_data (str | bytes | bytearray) – The JSON data to validate.
strict (bool | None) – Whether to enforce types strictly.
context (Any | None) – Extra variables to pass to the validator.
by_alias (bool | None) – Whether to use the field’s alias when validating against the provided input data.
by_name (bool | None) – Whether to use the field’s name when validating against the provided input data.
- Returns:
The validated Pydantic model.
- Raises:
ValidationError – If json_data is not a JSON string or the object could not be validated.
- Return type:
- classmethod model_validate_strings(obj, *, strict=None, context=None, by_alias=None, by_name=None)[source]
Validate the given object with string data against the Pydantic model.
- Parameters:
obj (Any) – The object containing string data to validate.
strict (bool | None) – Whether to enforce types strictly.
context (Any | None) – Extra variables to pass to the validator.
by_alias (bool | None) – Whether to use the field’s alias when validating against the provided input data.
by_name (bool | None) – Whether to use the field’s name when validating against the provided input data.
- Returns:
The validated Pydantic model.
- Return type:
- classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
- classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
- class langgraph_agent_toolkit.schema.StreamInput(*, input, model_name=None, model_provider=None, model_config_key=None, thread_id=None, user_id=None, agent_config={}, recursion_limit=None, stream_tokens=True)[source][source]
Bases:
UserInputUser input for streaming the agent’s response.
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- Parameters:
- __init__(**data)[source]
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- Parameters:
data (Any)
- Return type:
None
- copy(*, include=None, exclude=None, update=None, deep=False)[source]
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Parameters:
include (AbstractSetIntStr | MappingIntStrAny | None) – Optional set or mapping specifying which fields to include in the copied model.
exclude (AbstractSetIntStr | MappingIntStrAny | None) – Optional set or mapping specifying which fields to exclude in the copied model.
update (Dict[str, Any] | None) – Optional dictionary of field-value pairs to override field values in the copied model.
deep (bool) – If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- Return type:
Self
- dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
- Parameters:
include (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None)
exclude (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None)
by_alias (bool)
exclude_unset (bool)
exclude_defaults (bool)
exclude_none (bool)
- Return type:
- json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
- Parameters:
include (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None)
exclude (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None)
by_alias (bool)
exclude_unset (bool)
exclude_defaults (bool)
exclude_none (bool)
models_as_dict (bool)
dumps_kwargs (Any)
- Return type:
- model_computed_fields = {}
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- classmethod model_construct(_fields_set=None, **values)[source]
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.
- !!! note
model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == ‘allow’, then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == ‘ignore’ (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == ‘forbid’ does not result in an error if extra values are passed, but they will be ignored.
- Parameters:
_fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.
values (Any) – Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- Return type:
- model_copy(*, update=None, deep=False)[source]
- !!! abstract “Usage Documentation”
[model_copy](../concepts/serialization.md#model_copy)
Returns a copy of the model.
- !!! note
The underlying instance’s [__dict__][object.__dict__] attribute is copied. This might have unexpected side effects if you store anything in it, on top of the model fields (e.g. the value of [cached properties][functools.cached_property]).
- model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=None, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, fallback=None, serialize_as_any=False)[source]
- !!! abstract “Usage Documentation”
[model_dump](../concepts/serialization.md#modelmodel_dump)
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Parameters:
mode (Literal['json', 'python'] | str) – The mode in which to_python should run. If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None) – A set of fields to include in the output.
exclude (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None) – A set of fields to exclude from the output.
context (Any | None) – Additional context to pass to the serializer.
by_alias (bool | None) – Whether to use the field’s alias in the dictionary key if defined.
exclude_unset (bool) – Whether to exclude fields that have not been explicitly set.
exclude_defaults (bool) – Whether to exclude fields that are set to their default value.
exclude_none (bool) – Whether to exclude fields that have a value of None.
round_trip (bool) – If True, dumped values should be valid as input for non-idempotent types such as Json[T].
warnings (bool | Literal['none', 'warn', 'error']) – How to handle serialization errors. False/”none” ignores them, True/”warn” logs errors, “error” raises a [PydanticSerializationError][pydantic_core.PydanticSerializationError].
fallback (Callable[[Any], Any] | None) – A function to call when an unknown value is encountered. If not provided, a [PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised.
serialize_as_any (bool) – Whether to serialize fields with duck-typing serialization behavior.
- Returns:
A dictionary representation of the model.
- Return type:
- model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=None, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, fallback=None, serialize_as_any=False)[source]
- !!! abstract “Usage Documentation”
[model_dump_json](../concepts/serialization.md#modelmodel_dump_json)
Generates a JSON representation of the model using Pydantic’s to_json method.
- Parameters:
indent (int | None) – Indentation to use in the JSON output. If None is passed, the output will be compact.
include (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None) – Field(s) to include in the JSON output.
exclude (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None) – Field(s) to exclude from the JSON output.
context (Any | None) – Additional context to pass to the serializer.
by_alias (bool | None) – Whether to serialize using field aliases.
exclude_unset (bool) – Whether to exclude fields that have not been explicitly set.
exclude_defaults (bool) – Whether to exclude fields that are set to their default value.
exclude_none (bool) – Whether to exclude fields that have a value of None.
round_trip (bool) – If True, dumped values should be valid as input for non-idempotent types such as Json[T].
warnings (bool | Literal['none', 'warn', 'error']) – How to handle serialization errors. False/”none” ignores them, True/”warn” logs errors, “error” raises a [PydanticSerializationError][pydantic_core.PydanticSerializationError].
fallback (Callable[[Any], Any] | None) – A function to call when an unknown value is encountered. If not provided, a [PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised.
serialize_as_any (bool) – Whether to serialize fields with duck-typing serialization behavior.
- Returns:
A JSON string representation of the model.
- Return type:
- property model_extra: dict[str, Any] | None
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- model_fields = {'agent_config': FieldInfo(annotation=dict[str, Any], required=False, default={}, description='Additional configuration to pass through to the agent', examples=[{'checkpointer_params': {'k': 6}, 'temperature': 0.0, 'max_tokens': 2048, 'top_p': 0.95, 'streaming': True}]), 'input': FieldInfo(annotation=UserComplexInput, required=True, description='Structured input from the user, including a message and optional dynamic fields.', examples=[{'message': 'What is the weather in Tokyo?'}]), 'model_config_key': FieldInfo(annotation=Union[str, NoneType], required=False, default=None, title='Model Configuration Key', description='Key for predefined model configuration in MODEL_CONFIGS.', examples=['gpt4o', 'gemini']), 'model_name': FieldInfo(annotation=Union[str, NoneType], required=False, default=None, title='Model', description='LLM Model Name to use for the agent.', examples=['gpt-3.5-turbo', 'gpt-4o']), 'model_provider': FieldInfo(annotation=Union[str, NoneType], required=False, default=None, title='Model Provider', description='LLM Model Provider to use for the agent.', examples=['openai', 'anthropic']), 'recursion_limit': FieldInfo(annotation=Union[int, NoneType], required=False, default=None, description='Recursion limit for the agent.', examples=[25]), 'stream_tokens': FieldInfo(annotation=bool, required=False, default=True, description='Whether to stream LLM tokens to the client.'), 'thread_id': FieldInfo(annotation=Union[str, NoneType], required=False, default=None, description='Thread ID to persist and continue a multi-turn conversation.', examples=['847c6285-8fc9-4560-a83f-4e6285809254']), 'user_id': FieldInfo(annotation=Union[str, NoneType], required=False, default=None, description='User ID to persist in observability platform and share long-term memory.', examples=['521c0a60-ea75-43fa-a793-a4cf11e013ae'])}
- property model_fields_set: set[str]
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- classmethod model_json_schema(by_alias=True, ref_template=DEFAULT_REF_TEMPLATE, schema_generator=GenerateJsonSchema, mode='validation')[source]
Generates a JSON schema for a model class.
- Parameters:
by_alias (bool) – Whether to use attribute aliases or not.
ref_template (str) – The reference template.
schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications
mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- Return type:
- classmethod model_parametrized_name(params)[source]
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Parameters:
params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError – Raised when trying to generate concrete names for non-generic models.
- Return type:
- model_post_init(context, /)[source]
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- Parameters:
context (Any)
- Return type:
None
- classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Parameters:
force (bool) – Whether to force the rebuilding of the model schema, defaults to False.
raise_errors (bool) – Whether to raise errors, defaults to True.
_parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.
_types_namespace (MappingNamespace | None) – The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- Return type:
bool | None
- classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None, by_alias=None, by_name=None)[source]
Validate a pydantic model instance.
- Parameters:
obj (Any) – The object to validate.
strict (bool | None) – Whether to enforce types strictly.
from_attributes (bool | None) – Whether to extract data from object attributes.
context (Any | None) – Additional context to pass to the validator.
by_alias (bool | None) – Whether to use the field’s alias when validating against the provided input data.
by_name (bool | None) – Whether to use the field’s name when validating against the provided input data.
- Raises:
ValidationError – If the object could not be validated.
- Returns:
The validated model instance.
- Return type:
- classmethod model_validate_json(json_data, *, strict=None, context=None, by_alias=None, by_name=None)[source]
- !!! abstract “Usage Documentation”
[JSON Parsing](../concepts/json.md#json-parsing)
Validate the given JSON data against the Pydantic model.
- Parameters:
json_data (str | bytes | bytearray) – The JSON data to validate.
strict (bool | None) – Whether to enforce types strictly.
context (Any | None) – Extra variables to pass to the validator.
by_alias (bool | None) – Whether to use the field’s alias when validating against the provided input data.
by_name (bool | None) – Whether to use the field’s name when validating against the provided input data.
- Returns:
The validated Pydantic model.
- Raises:
ValidationError – If json_data is not a JSON string or the object could not be validated.
- Return type:
- classmethod model_validate_strings(obj, *, strict=None, context=None, by_alias=None, by_name=None)[source]
Validate the given object with string data against the Pydantic model.
- Parameters:
obj (Any) – The object containing string data to validate.
strict (bool | None) – Whether to enforce types strictly.
context (Any | None) – Extra variables to pass to the validator.
by_alias (bool | None) – Whether to use the field’s alias when validating against the provided input data.
by_name (bool | None) – Whether to use the field’s name when validating against the provided input data.
- Returns:
The validated Pydantic model.
- Return type:
- classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
- classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
- classmethod schema_json(*, by_alias=True, ref_template=DEFAULT_REF_TEMPLATE, **dumps_kwargs)[source]
- input: UserComplexInput
- class langgraph_agent_toolkit.schema.Feedback(*, run_id, key, score, user_id=None, kwargs={})[source][source]
Bases:
BaseModelFeedback for a run, to record to LangSmith.
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- __init__(**data)[source]
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- Parameters:
data (Any)
- Return type:
None
- copy(*, include=None, exclude=None, update=None, deep=False)[source]
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Parameters:
include (AbstractSetIntStr | MappingIntStrAny | None) – Optional set or mapping specifying which fields to include in the copied model.
exclude (AbstractSetIntStr | MappingIntStrAny | None) – Optional set or mapping specifying which fields to exclude in the copied model.
update (Dict[str, Any] | None) – Optional dictionary of field-value pairs to override field values in the copied model.
deep (bool) – If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- Return type:
Self
- dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
- Parameters:
include (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None)
exclude (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None)
by_alias (bool)
exclude_unset (bool)
exclude_defaults (bool)
exclude_none (bool)
- Return type:
- json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
- Parameters:
include (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None)
exclude (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None)
by_alias (bool)
exclude_unset (bool)
exclude_defaults (bool)
exclude_none (bool)
models_as_dict (bool)
dumps_kwargs (Any)
- Return type:
- model_computed_fields = {}
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- classmethod model_construct(_fields_set=None, **values)[source]
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.
- !!! note
model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == ‘allow’, then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == ‘ignore’ (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == ‘forbid’ does not result in an error if extra values are passed, but they will be ignored.
- Parameters:
_fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.
values (Any) – Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- Return type:
- model_copy(*, update=None, deep=False)[source]
- !!! abstract “Usage Documentation”
[model_copy](../concepts/serialization.md#model_copy)
Returns a copy of the model.
- !!! note
The underlying instance’s [__dict__][object.__dict__] attribute is copied. This might have unexpected side effects if you store anything in it, on top of the model fields (e.g. the value of [cached properties][functools.cached_property]).
- model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=None, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, fallback=None, serialize_as_any=False)[source]
- !!! abstract “Usage Documentation”
[model_dump](../concepts/serialization.md#modelmodel_dump)
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Parameters:
mode (Literal['json', 'python'] | str) – The mode in which to_python should run. If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None) – A set of fields to include in the output.
exclude (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None) – A set of fields to exclude from the output.
context (Any | None) – Additional context to pass to the serializer.
by_alias (bool | None) – Whether to use the field’s alias in the dictionary key if defined.
exclude_unset (bool) – Whether to exclude fields that have not been explicitly set.
exclude_defaults (bool) – Whether to exclude fields that are set to their default value.
exclude_none (bool) – Whether to exclude fields that have a value of None.
round_trip (bool) – If True, dumped values should be valid as input for non-idempotent types such as Json[T].
warnings (bool | Literal['none', 'warn', 'error']) – How to handle serialization errors. False/”none” ignores them, True/”warn” logs errors, “error” raises a [PydanticSerializationError][pydantic_core.PydanticSerializationError].
fallback (Callable[[Any], Any] | None) – A function to call when an unknown value is encountered. If not provided, a [PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised.
serialize_as_any (bool) – Whether to serialize fields with duck-typing serialization behavior.
- Returns:
A dictionary representation of the model.
- Return type:
- model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=None, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, fallback=None, serialize_as_any=False)[source]
- !!! abstract “Usage Documentation”
[model_dump_json](../concepts/serialization.md#modelmodel_dump_json)
Generates a JSON representation of the model using Pydantic’s to_json method.
- Parameters:
indent (int | None) – Indentation to use in the JSON output. If None is passed, the output will be compact.
include (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None) – Field(s) to include in the JSON output.
exclude (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None) – Field(s) to exclude from the JSON output.
context (Any | None) – Additional context to pass to the serializer.
by_alias (bool | None) – Whether to serialize using field aliases.
exclude_unset (bool) – Whether to exclude fields that have not been explicitly set.
exclude_defaults (bool) – Whether to exclude fields that are set to their default value.
exclude_none (bool) – Whether to exclude fields that have a value of None.
round_trip (bool) – If True, dumped values should be valid as input for non-idempotent types such as Json[T].
warnings (bool | Literal['none', 'warn', 'error']) – How to handle serialization errors. False/”none” ignores them, True/”warn” logs errors, “error” raises a [PydanticSerializationError][pydantic_core.PydanticSerializationError].
fallback (Callable[[Any], Any] | None) – A function to call when an unknown value is encountered. If not provided, a [PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised.
serialize_as_any (bool) – Whether to serialize fields with duck-typing serialization behavior.
- Returns:
A JSON string representation of the model.
- Return type:
- property model_extra: dict[str, Any] | None
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- model_fields = {'key': FieldInfo(annotation=str, required=True, description='Feedback key.', examples=['human-feedback-stars']), 'kwargs': FieldInfo(annotation=dict[str, Any], required=False, default={}, description='Additional feedback kwargs, passed to LangSmith.', examples=[{'comment': 'In-line human feedback'}]), 'run_id': FieldInfo(annotation=str, required=True, description='Run ID to record feedback for.', examples=['847c6285-8fc9-4560-a83f-4e6285809254']), 'score': FieldInfo(annotation=float, required=True, description='Feedback score.', examples=[0.8]), 'user_id': FieldInfo(annotation=Union[str, NoneType], required=False, default=None, description='User ID to associate with the feedback.', examples=['521c0a60-ea75-43fa-a793-a4cf11e013ae'])}
- property model_fields_set: set[str]
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- classmethod model_json_schema(by_alias=True, ref_template=DEFAULT_REF_TEMPLATE, schema_generator=GenerateJsonSchema, mode='validation')[source]
Generates a JSON schema for a model class.
- Parameters:
by_alias (bool) – Whether to use attribute aliases or not.
ref_template (str) – The reference template.
schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications
mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- Return type:
- classmethod model_parametrized_name(params)[source]
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Parameters:
params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError – Raised when trying to generate concrete names for non-generic models.
- Return type:
- model_post_init(context, /)[source]
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- Parameters:
context (Any)
- Return type:
None
- classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Parameters:
force (bool) – Whether to force the rebuilding of the model schema, defaults to False.
raise_errors (bool) – Whether to raise errors, defaults to True.
_parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.
_types_namespace (MappingNamespace | None) – The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- Return type:
bool | None
- classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None, by_alias=None, by_name=None)[source]
Validate a pydantic model instance.
- Parameters:
obj (Any) – The object to validate.
strict (bool | None) – Whether to enforce types strictly.
from_attributes (bool | None) – Whether to extract data from object attributes.
context (Any | None) – Additional context to pass to the validator.
by_alias (bool | None) – Whether to use the field’s alias when validating against the provided input data.
by_name (bool | None) – Whether to use the field’s name when validating against the provided input data.
- Raises:
ValidationError – If the object could not be validated.
- Returns:
The validated model instance.
- Return type:
- classmethod model_validate_json(json_data, *, strict=None, context=None, by_alias=None, by_name=None)[source]
- !!! abstract “Usage Documentation”
[JSON Parsing](../concepts/json.md#json-parsing)
Validate the given JSON data against the Pydantic model.
- Parameters:
json_data (str | bytes | bytearray) – The JSON data to validate.
strict (bool | None) – Whether to enforce types strictly.
context (Any | None) – Extra variables to pass to the validator.
by_alias (bool | None) – Whether to use the field’s alias when validating against the provided input data.
by_name (bool | None) – Whether to use the field’s name when validating against the provided input data.
- Returns:
The validated Pydantic model.
- Raises:
ValidationError – If json_data is not a JSON string or the object could not be validated.
- Return type:
- classmethod model_validate_strings(obj, *, strict=None, context=None, by_alias=None, by_name=None)[source]
Validate the given object with string data against the Pydantic model.
- Parameters:
obj (Any) – The object containing string data to validate.
strict (bool | None) – Whether to enforce types strictly.
context (Any | None) – Extra variables to pass to the validator.
by_alias (bool | None) – Whether to use the field’s alias when validating against the provided input data.
by_name (bool | None) – Whether to use the field’s name when validating against the provided input data.
- Returns:
The validated Pydantic model.
- Return type:
- classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
- classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
- class langgraph_agent_toolkit.schema.FeedbackResponse(*, status='success', run_id, message='Feedback recorded successfully.')[source][source]
Bases:
BaseModelResponse after recording feedback.
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- __init__(**data)[source]
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- Parameters:
data (Any)
- Return type:
None
- copy(*, include=None, exclude=None, update=None, deep=False)[source]
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Parameters:
include (AbstractSetIntStr | MappingIntStrAny | None) – Optional set or mapping specifying which fields to include in the copied model.
exclude (AbstractSetIntStr | MappingIntStrAny | None) – Optional set or mapping specifying which fields to exclude in the copied model.
update (Dict[str, Any] | None) – Optional dictionary of field-value pairs to override field values in the copied model.
deep (bool) – If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- Return type:
Self
- dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
- Parameters:
include (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None)
exclude (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None)
by_alias (bool)
exclude_unset (bool)
exclude_defaults (bool)
exclude_none (bool)
- Return type:
- json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
- Parameters:
include (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None)
exclude (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None)
by_alias (bool)
exclude_unset (bool)
exclude_defaults (bool)
exclude_none (bool)
models_as_dict (bool)
dumps_kwargs (Any)
- Return type:
- model_computed_fields = {}
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- classmethod model_construct(_fields_set=None, **values)[source]
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.
- !!! note
model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == ‘allow’, then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == ‘ignore’ (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == ‘forbid’ does not result in an error if extra values are passed, but they will be ignored.
- Parameters:
_fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.
values (Any) – Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- Return type:
- model_copy(*, update=None, deep=False)[source]
- !!! abstract “Usage Documentation”
[model_copy](../concepts/serialization.md#model_copy)
Returns a copy of the model.
- !!! note
The underlying instance’s [__dict__][object.__dict__] attribute is copied. This might have unexpected side effects if you store anything in it, on top of the model fields (e.g. the value of [cached properties][functools.cached_property]).
- model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=None, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, fallback=None, serialize_as_any=False)[source]
- !!! abstract “Usage Documentation”
[model_dump](../concepts/serialization.md#modelmodel_dump)
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Parameters:
mode (Literal['json', 'python'] | str) – The mode in which to_python should run. If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None) – A set of fields to include in the output.
exclude (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None) – A set of fields to exclude from the output.
context (Any | None) – Additional context to pass to the serializer.
by_alias (bool | None) – Whether to use the field’s alias in the dictionary key if defined.
exclude_unset (bool) – Whether to exclude fields that have not been explicitly set.
exclude_defaults (bool) – Whether to exclude fields that are set to their default value.
exclude_none (bool) – Whether to exclude fields that have a value of None.
round_trip (bool) – If True, dumped values should be valid as input for non-idempotent types such as Json[T].
warnings (bool | Literal['none', 'warn', 'error']) – How to handle serialization errors. False/”none” ignores them, True/”warn” logs errors, “error” raises a [PydanticSerializationError][pydantic_core.PydanticSerializationError].
fallback (Callable[[Any], Any] | None) – A function to call when an unknown value is encountered. If not provided, a [PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised.
serialize_as_any (bool) – Whether to serialize fields with duck-typing serialization behavior.
- Returns:
A dictionary representation of the model.
- Return type:
- model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=None, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, fallback=None, serialize_as_any=False)[source]
- !!! abstract “Usage Documentation”
[model_dump_json](../concepts/serialization.md#modelmodel_dump_json)
Generates a JSON representation of the model using Pydantic’s to_json method.
- Parameters:
indent (int | None) – Indentation to use in the JSON output. If None is passed, the output will be compact.
include (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None) – Field(s) to include in the JSON output.
exclude (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None) – Field(s) to exclude from the JSON output.
context (Any | None) – Additional context to pass to the serializer.
by_alias (bool | None) – Whether to serialize using field aliases.
exclude_unset (bool) – Whether to exclude fields that have not been explicitly set.
exclude_defaults (bool) – Whether to exclude fields that are set to their default value.
exclude_none (bool) – Whether to exclude fields that have a value of None.
round_trip (bool) – If True, dumped values should be valid as input for non-idempotent types such as Json[T].
warnings (bool | Literal['none', 'warn', 'error']) – How to handle serialization errors. False/”none” ignores them, True/”warn” logs errors, “error” raises a [PydanticSerializationError][pydantic_core.PydanticSerializationError].
fallback (Callable[[Any], Any] | None) – A function to call when an unknown value is encountered. If not provided, a [PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised.
serialize_as_any (bool) – Whether to serialize fields with duck-typing serialization behavior.
- Returns:
A JSON string representation of the model.
- Return type:
- property model_extra: dict[str, Any] | None
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- model_fields = {'message': FieldInfo(annotation=str, required=False, default='Feedback recorded successfully.', description='Descriptive message about the feedback operation.'), 'run_id': FieldInfo(annotation=str, required=True, description='Run ID for which feedback was recorded.', examples=['847c6285-8fc9-4560-a83f-4e6285809254']), 'status': FieldInfo(annotation=Literal['success'], required=False, default='success')}
- property model_fields_set: set[str]
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- classmethod model_json_schema(by_alias=True, ref_template=DEFAULT_REF_TEMPLATE, schema_generator=GenerateJsonSchema, mode='validation')[source]
Generates a JSON schema for a model class.
- Parameters:
by_alias (bool) – Whether to use attribute aliases or not.
ref_template (str) – The reference template.
schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications
mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- Return type:
- classmethod model_parametrized_name(params)[source]
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Parameters:
params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError – Raised when trying to generate concrete names for non-generic models.
- Return type:
- model_post_init(context, /)[source]
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- Parameters:
context (Any)
- Return type:
None
- classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Parameters:
force (bool) – Whether to force the rebuilding of the model schema, defaults to False.
raise_errors (bool) – Whether to raise errors, defaults to True.
_parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.
_types_namespace (MappingNamespace | None) – The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- Return type:
bool | None
- classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None, by_alias=None, by_name=None)[source]
Validate a pydantic model instance.
- Parameters:
obj (Any) – The object to validate.
strict (bool | None) – Whether to enforce types strictly.
from_attributes (bool | None) – Whether to extract data from object attributes.
context (Any | None) – Additional context to pass to the validator.
by_alias (bool | None) – Whether to use the field’s alias when validating against the provided input data.
by_name (bool | None) – Whether to use the field’s name when validating against the provided input data.
- Raises:
ValidationError – If the object could not be validated.
- Returns:
The validated model instance.
- Return type:
- classmethod model_validate_json(json_data, *, strict=None, context=None, by_alias=None, by_name=None)[source]
- !!! abstract “Usage Documentation”
[JSON Parsing](../concepts/json.md#json-parsing)
Validate the given JSON data against the Pydantic model.
- Parameters:
json_data (str | bytes | bytearray) – The JSON data to validate.
strict (bool | None) – Whether to enforce types strictly.
context (Any | None) – Extra variables to pass to the validator.
by_alias (bool | None) – Whether to use the field’s alias when validating against the provided input data.
by_name (bool | None) – Whether to use the field’s name when validating against the provided input data.
- Returns:
The validated Pydantic model.
- Raises:
ValidationError – If json_data is not a JSON string or the object could not be validated.
- Return type:
- classmethod model_validate_strings(obj, *, strict=None, context=None, by_alias=None, by_name=None)[source]
Validate the given object with string data against the Pydantic model.
- Parameters:
obj (Any) – The object containing string data to validate.
strict (bool | None) – Whether to enforce types strictly.
context (Any | None) – Extra variables to pass to the validator.
by_alias (bool | None) – Whether to use the field’s alias when validating against the provided input data.
by_name (bool | None) – Whether to use the field’s name when validating against the provided input data.
- Returns:
The validated Pydantic model.
- Return type:
- classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
- classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
- class langgraph_agent_toolkit.schema.ChatHistoryInput(*, thread_id=None, user_id=None)[source][source]
Bases:
BaseModelInput for retrieving chat history.
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- __init__(**data)[source]
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- Parameters:
data (Any)
- Return type:
None
- copy(*, include=None, exclude=None, update=None, deep=False)[source]
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Parameters:
include (AbstractSetIntStr | MappingIntStrAny | None) – Optional set or mapping specifying which fields to include in the copied model.
exclude (AbstractSetIntStr | MappingIntStrAny | None) – Optional set or mapping specifying which fields to exclude in the copied model.
update (Dict[str, Any] | None) – Optional dictionary of field-value pairs to override field values in the copied model.
deep (bool) – If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- Return type:
Self
- dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
- Parameters:
include (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None)
exclude (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None)
by_alias (bool)
exclude_unset (bool)
exclude_defaults (bool)
exclude_none (bool)
- Return type:
- json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
- Parameters:
include (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None)
exclude (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None)
by_alias (bool)
exclude_unset (bool)
exclude_defaults (bool)
exclude_none (bool)
models_as_dict (bool)
dumps_kwargs (Any)
- Return type:
- model_computed_fields = {}
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- classmethod model_construct(_fields_set=None, **values)[source]
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.
- !!! note
model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == ‘allow’, then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == ‘ignore’ (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == ‘forbid’ does not result in an error if extra values are passed, but they will be ignored.
- Parameters:
_fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.
values (Any) – Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- Return type:
- model_copy(*, update=None, deep=False)[source]
- !!! abstract “Usage Documentation”
[model_copy](../concepts/serialization.md#model_copy)
Returns a copy of the model.
- !!! note
The underlying instance’s [__dict__][object.__dict__] attribute is copied. This might have unexpected side effects if you store anything in it, on top of the model fields (e.g. the value of [cached properties][functools.cached_property]).
- model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=None, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, fallback=None, serialize_as_any=False)[source]
- !!! abstract “Usage Documentation”
[model_dump](../concepts/serialization.md#modelmodel_dump)
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Parameters:
mode (Literal['json', 'python'] | str) – The mode in which to_python should run. If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None) – A set of fields to include in the output.
exclude (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None) – A set of fields to exclude from the output.
context (Any | None) – Additional context to pass to the serializer.
by_alias (bool | None) – Whether to use the field’s alias in the dictionary key if defined.
exclude_unset (bool) – Whether to exclude fields that have not been explicitly set.
exclude_defaults (bool) – Whether to exclude fields that are set to their default value.
exclude_none (bool) – Whether to exclude fields that have a value of None.
round_trip (bool) – If True, dumped values should be valid as input for non-idempotent types such as Json[T].
warnings (bool | Literal['none', 'warn', 'error']) – How to handle serialization errors. False/”none” ignores them, True/”warn” logs errors, “error” raises a [PydanticSerializationError][pydantic_core.PydanticSerializationError].
fallback (Callable[[Any], Any] | None) – A function to call when an unknown value is encountered. If not provided, a [PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised.
serialize_as_any (bool) – Whether to serialize fields with duck-typing serialization behavior.
- Returns:
A dictionary representation of the model.
- Return type:
- model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=None, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, fallback=None, serialize_as_any=False)[source]
- !!! abstract “Usage Documentation”
[model_dump_json](../concepts/serialization.md#modelmodel_dump_json)
Generates a JSON representation of the model using Pydantic’s to_json method.
- Parameters:
indent (int | None) – Indentation to use in the JSON output. If None is passed, the output will be compact.
include (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None) – Field(s) to include in the JSON output.
exclude (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None) – Field(s) to exclude from the JSON output.
context (Any | None) – Additional context to pass to the serializer.
by_alias (bool | None) – Whether to serialize using field aliases.
exclude_unset (bool) – Whether to exclude fields that have not been explicitly set.
exclude_defaults (bool) – Whether to exclude fields that are set to their default value.
exclude_none (bool) – Whether to exclude fields that have a value of None.
round_trip (bool) – If True, dumped values should be valid as input for non-idempotent types such as Json[T].
warnings (bool | Literal['none', 'warn', 'error']) – How to handle serialization errors. False/”none” ignores them, True/”warn” logs errors, “error” raises a [PydanticSerializationError][pydantic_core.PydanticSerializationError].
fallback (Callable[[Any], Any] | None) – A function to call when an unknown value is encountered. If not provided, a [PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised.
serialize_as_any (bool) – Whether to serialize fields with duck-typing serialization behavior.
- Returns:
A JSON string representation of the model.
- Return type:
- property model_extra: dict[str, Any] | None
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- model_fields = {'thread_id': FieldInfo(annotation=Union[str, NoneType], required=False, default=None, description='Thread ID to persist and continue a multi-turn conversation.', examples=['847c6285-8fc9-4560-a83f-4e6285809254']), 'user_id': FieldInfo(annotation=Union[str, NoneType], required=False, default=None, description='User ID to persist in observability platform and share long-term memory.', examples=['521c0a60-ea75-43fa-a793-a4cf11e013ae'])}
- property model_fields_set: set[str]
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- classmethod model_json_schema(by_alias=True, ref_template=DEFAULT_REF_TEMPLATE, schema_generator=GenerateJsonSchema, mode='validation')[source]
Generates a JSON schema for a model class.
- Parameters:
by_alias (bool) – Whether to use attribute aliases or not.
ref_template (str) – The reference template.
schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications
mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- Return type:
- classmethod model_parametrized_name(params)[source]
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Parameters:
params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError – Raised when trying to generate concrete names for non-generic models.
- Return type:
- model_post_init(context, /)[source]
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- Parameters:
context (Any)
- Return type:
None
- classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Parameters:
force (bool) – Whether to force the rebuilding of the model schema, defaults to False.
raise_errors (bool) – Whether to raise errors, defaults to True.
_parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.
_types_namespace (MappingNamespace | None) – The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- Return type:
bool | None
- classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None, by_alias=None, by_name=None)[source]
Validate a pydantic model instance.
- Parameters:
obj (Any) – The object to validate.
strict (bool | None) – Whether to enforce types strictly.
from_attributes (bool | None) – Whether to extract data from object attributes.
context (Any | None) – Additional context to pass to the validator.
by_alias (bool | None) – Whether to use the field’s alias when validating against the provided input data.
by_name (bool | None) – Whether to use the field’s name when validating against the provided input data.
- Raises:
ValidationError – If the object could not be validated.
- Returns:
The validated model instance.
- Return type:
- classmethod model_validate_json(json_data, *, strict=None, context=None, by_alias=None, by_name=None)[source]
- !!! abstract “Usage Documentation”
[JSON Parsing](../concepts/json.md#json-parsing)
Validate the given JSON data against the Pydantic model.
- Parameters:
json_data (str | bytes | bytearray) – The JSON data to validate.
strict (bool | None) – Whether to enforce types strictly.
context (Any | None) – Extra variables to pass to the validator.
by_alias (bool | None) – Whether to use the field’s alias when validating against the provided input data.
by_name (bool | None) – Whether to use the field’s name when validating against the provided input data.
- Returns:
The validated Pydantic model.
- Raises:
ValidationError – If json_data is not a JSON string or the object could not be validated.
- Return type:
- classmethod model_validate_strings(obj, *, strict=None, context=None, by_alias=None, by_name=None)[source]
Validate the given object with string data against the Pydantic model.
- Parameters:
obj (Any) – The object containing string data to validate.
strict (bool | None) – Whether to enforce types strictly.
context (Any | None) – Extra variables to pass to the validator.
by_alias (bool | None) – Whether to use the field’s alias when validating against the provided input data.
by_name (bool | None) – Whether to use the field’s name when validating against the provided input data.
- Returns:
The validated Pydantic model.
- Return type:
- classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
- classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
- class langgraph_agent_toolkit.schema.ChatHistory(*, messages)[source][source]
Bases:
BaseModelCreate a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- Parameters:
messages (list[ChatMessage])
- __init__(**data)[source]
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- Parameters:
data (Any)
- Return type:
None
- copy(*, include=None, exclude=None, update=None, deep=False)[source]
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Parameters:
include (AbstractSetIntStr | MappingIntStrAny | None) – Optional set or mapping specifying which fields to include in the copied model.
exclude (AbstractSetIntStr | MappingIntStrAny | None) – Optional set or mapping specifying which fields to exclude in the copied model.
update (Dict[str, Any] | None) – Optional dictionary of field-value pairs to override field values in the copied model.
deep (bool) – If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- Return type:
Self
- dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
- Parameters:
include (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None)
exclude (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None)
by_alias (bool)
exclude_unset (bool)
exclude_defaults (bool)
exclude_none (bool)
- Return type:
- json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
- Parameters:
include (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None)
exclude (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None)
by_alias (bool)
exclude_unset (bool)
exclude_defaults (bool)
exclude_none (bool)
models_as_dict (bool)
dumps_kwargs (Any)
- Return type:
- model_computed_fields = {}
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- classmethod model_construct(_fields_set=None, **values)[source]
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.
- !!! note
model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == ‘allow’, then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == ‘ignore’ (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == ‘forbid’ does not result in an error if extra values are passed, but they will be ignored.
- Parameters:
_fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.
values (Any) – Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- Return type:
- model_copy(*, update=None, deep=False)[source]
- !!! abstract “Usage Documentation”
[model_copy](../concepts/serialization.md#model_copy)
Returns a copy of the model.
- !!! note
The underlying instance’s [__dict__][object.__dict__] attribute is copied. This might have unexpected side effects if you store anything in it, on top of the model fields (e.g. the value of [cached properties][functools.cached_property]).
- model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=None, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, fallback=None, serialize_as_any=False)[source]
- !!! abstract “Usage Documentation”
[model_dump](../concepts/serialization.md#modelmodel_dump)
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Parameters:
mode (Literal['json', 'python'] | str) – The mode in which to_python should run. If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None) – A set of fields to include in the output.
exclude (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None) – A set of fields to exclude from the output.
context (Any | None) – Additional context to pass to the serializer.
by_alias (bool | None) – Whether to use the field’s alias in the dictionary key if defined.
exclude_unset (bool) – Whether to exclude fields that have not been explicitly set.
exclude_defaults (bool) – Whether to exclude fields that are set to their default value.
exclude_none (bool) – Whether to exclude fields that have a value of None.
round_trip (bool) – If True, dumped values should be valid as input for non-idempotent types such as Json[T].
warnings (bool | Literal['none', 'warn', 'error']) – How to handle serialization errors. False/”none” ignores them, True/”warn” logs errors, “error” raises a [PydanticSerializationError][pydantic_core.PydanticSerializationError].
fallback (Callable[[Any], Any] | None) – A function to call when an unknown value is encountered. If not provided, a [PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised.
serialize_as_any (bool) – Whether to serialize fields with duck-typing serialization behavior.
- Returns:
A dictionary representation of the model.
- Return type:
- model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=None, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, fallback=None, serialize_as_any=False)[source]
- !!! abstract “Usage Documentation”
[model_dump_json](../concepts/serialization.md#modelmodel_dump_json)
Generates a JSON representation of the model using Pydantic’s to_json method.
- Parameters:
indent (int | None) – Indentation to use in the JSON output. If None is passed, the output will be compact.
include (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None) – Field(s) to include in the JSON output.
exclude (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None) – Field(s) to exclude from the JSON output.
context (Any | None) – Additional context to pass to the serializer.
by_alias (bool | None) – Whether to serialize using field aliases.
exclude_unset (bool) – Whether to exclude fields that have not been explicitly set.
exclude_defaults (bool) – Whether to exclude fields that are set to their default value.
exclude_none (bool) – Whether to exclude fields that have a value of None.
round_trip (bool) – If True, dumped values should be valid as input for non-idempotent types such as Json[T].
warnings (bool | Literal['none', 'warn', 'error']) – How to handle serialization errors. False/”none” ignores them, True/”warn” logs errors, “error” raises a [PydanticSerializationError][pydantic_core.PydanticSerializationError].
fallback (Callable[[Any], Any] | None) – A function to call when an unknown value is encountered. If not provided, a [PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised.
serialize_as_any (bool) – Whether to serialize fields with duck-typing serialization behavior.
- Returns:
A JSON string representation of the model.
- Return type:
- property model_extra: dict[str, Any] | None
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- model_fields = {'messages': FieldInfo(annotation=list[ChatMessage], required=True)}
- property model_fields_set: set[str]
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- classmethod model_json_schema(by_alias=True, ref_template=DEFAULT_REF_TEMPLATE, schema_generator=GenerateJsonSchema, mode='validation')[source]
Generates a JSON schema for a model class.
- Parameters:
by_alias (bool) – Whether to use attribute aliases or not.
ref_template (str) – The reference template.
schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications
mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- Return type:
- classmethod model_parametrized_name(params)[source]
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Parameters:
params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError – Raised when trying to generate concrete names for non-generic models.
- Return type:
- model_post_init(context, /)[source]
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- Parameters:
context (Any)
- Return type:
None
- classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Parameters:
force (bool) – Whether to force the rebuilding of the model schema, defaults to False.
raise_errors (bool) – Whether to raise errors, defaults to True.
_parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.
_types_namespace (MappingNamespace | None) – The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- Return type:
bool | None
- classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None, by_alias=None, by_name=None)[source]
Validate a pydantic model instance.
- Parameters:
obj (Any) – The object to validate.
strict (bool | None) – Whether to enforce types strictly.
from_attributes (bool | None) – Whether to extract data from object attributes.
context (Any | None) – Additional context to pass to the validator.
by_alias (bool | None) – Whether to use the field’s alias when validating against the provided input data.
by_name (bool | None) – Whether to use the field’s name when validating against the provided input data.
- Raises:
ValidationError – If the object could not be validated.
- Returns:
The validated model instance.
- Return type:
- classmethod model_validate_json(json_data, *, strict=None, context=None, by_alias=None, by_name=None)[source]
- !!! abstract “Usage Documentation”
[JSON Parsing](../concepts/json.md#json-parsing)
Validate the given JSON data against the Pydantic model.
- Parameters:
json_data (str | bytes | bytearray) – The JSON data to validate.
strict (bool | None) – Whether to enforce types strictly.
context (Any | None) – Extra variables to pass to the validator.
by_alias (bool | None) – Whether to use the field’s alias when validating against the provided input data.
by_name (bool | None) – Whether to use the field’s name when validating against the provided input data.
- Returns:
The validated Pydantic model.
- Raises:
ValidationError – If json_data is not a JSON string or the object could not be validated.
- Return type:
- classmethod model_validate_strings(obj, *, strict=None, context=None, by_alias=None, by_name=None)[source]
Validate the given object with string data against the Pydantic model.
- Parameters:
obj (Any) – The object containing string data to validate.
strict (bool | None) – Whether to enforce types strictly.
context (Any | None) – Extra variables to pass to the validator.
by_alias (bool | None) – Whether to use the field’s alias when validating against the provided input data.
by_name (bool | None) – Whether to use the field’s name when validating against the provided input data.
- Returns:
The validated Pydantic model.
- Return type:
- classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
- classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
- classmethod schema_json(*, by_alias=True, ref_template=DEFAULT_REF_TEMPLATE, **dumps_kwargs)[source]
- messages: list[ChatMessage]
- class langgraph_agent_toolkit.schema.HealthCheck(*, content, version)[source][source]
Bases:
BaseModelResponse model to validate and return when performing a health check.
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- __init__(**data)[source]
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- Parameters:
data (Any)
- Return type:
None
- copy(*, include=None, exclude=None, update=None, deep=False)[source]
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Parameters:
include (AbstractSetIntStr | MappingIntStrAny | None) – Optional set or mapping specifying which fields to include in the copied model.
exclude (AbstractSetIntStr | MappingIntStrAny | None) – Optional set or mapping specifying which fields to exclude in the copied model.
update (Dict[str, Any] | None) – Optional dictionary of field-value pairs to override field values in the copied model.
deep (bool) – If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- Return type:
Self
- dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
- Parameters:
include (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None)
exclude (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None)
by_alias (bool)
exclude_unset (bool)
exclude_defaults (bool)
exclude_none (bool)
- Return type:
- json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
- Parameters:
include (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None)
exclude (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None)
by_alias (bool)
exclude_unset (bool)
exclude_defaults (bool)
exclude_none (bool)
models_as_dict (bool)
dumps_kwargs (Any)
- Return type:
- model_computed_fields = {}
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- classmethod model_construct(_fields_set=None, **values)[source]
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.
- !!! note
model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == ‘allow’, then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == ‘ignore’ (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == ‘forbid’ does not result in an error if extra values are passed, but they will be ignored.
- Parameters:
_fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.
values (Any) – Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- Return type:
- model_copy(*, update=None, deep=False)[source]
- !!! abstract “Usage Documentation”
[model_copy](../concepts/serialization.md#model_copy)
Returns a copy of the model.
- !!! note
The underlying instance’s [__dict__][object.__dict__] attribute is copied. This might have unexpected side effects if you store anything in it, on top of the model fields (e.g. the value of [cached properties][functools.cached_property]).
- model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=None, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, fallback=None, serialize_as_any=False)[source]
- !!! abstract “Usage Documentation”
[model_dump](../concepts/serialization.md#modelmodel_dump)
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Parameters:
mode (Literal['json', 'python'] | str) – The mode in which to_python should run. If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None) – A set of fields to include in the output.
exclude (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None) – A set of fields to exclude from the output.
context (Any | None) – Additional context to pass to the serializer.
by_alias (bool | None) – Whether to use the field’s alias in the dictionary key if defined.
exclude_unset (bool) – Whether to exclude fields that have not been explicitly set.
exclude_defaults (bool) – Whether to exclude fields that are set to their default value.
exclude_none (bool) – Whether to exclude fields that have a value of None.
round_trip (bool) – If True, dumped values should be valid as input for non-idempotent types such as Json[T].
warnings (bool | Literal['none', 'warn', 'error']) – How to handle serialization errors. False/”none” ignores them, True/”warn” logs errors, “error” raises a [PydanticSerializationError][pydantic_core.PydanticSerializationError].
fallback (Callable[[Any], Any] | None) – A function to call when an unknown value is encountered. If not provided, a [PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised.
serialize_as_any (bool) – Whether to serialize fields with duck-typing serialization behavior.
- Returns:
A dictionary representation of the model.
- Return type:
- model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=None, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, fallback=None, serialize_as_any=False)[source]
- !!! abstract “Usage Documentation”
[model_dump_json](../concepts/serialization.md#modelmodel_dump_json)
Generates a JSON representation of the model using Pydantic’s to_json method.
- Parameters:
indent (int | None) – Indentation to use in the JSON output. If None is passed, the output will be compact.
include (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None) – Field(s) to include in the JSON output.
exclude (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None) – Field(s) to exclude from the JSON output.
context (Any | None) – Additional context to pass to the serializer.
by_alias (bool | None) – Whether to serialize using field aliases.
exclude_unset (bool) – Whether to exclude fields that have not been explicitly set.
exclude_defaults (bool) – Whether to exclude fields that are set to their default value.
exclude_none (bool) – Whether to exclude fields that have a value of None.
round_trip (bool) – If True, dumped values should be valid as input for non-idempotent types such as Json[T].
warnings (bool | Literal['none', 'warn', 'error']) – How to handle serialization errors. False/”none” ignores them, True/”warn” logs errors, “error” raises a [PydanticSerializationError][pydantic_core.PydanticSerializationError].
fallback (Callable[[Any], Any] | None) – A function to call when an unknown value is encountered. If not provided, a [PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised.
serialize_as_any (bool) – Whether to serialize fields with duck-typing serialization behavior.
- Returns:
A JSON string representation of the model.
- Return type:
- property model_extra: dict[str, Any] | None
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- model_fields = {'content': FieldInfo(annotation=str, required=True, description='Health status of the service.', examples=['healthy']), 'version': FieldInfo(annotation=str, required=True, description='Version of the service.', examples=['1.0.0'])}
- property model_fields_set: set[str]
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- classmethod model_json_schema(by_alias=True, ref_template=DEFAULT_REF_TEMPLATE, schema_generator=GenerateJsonSchema, mode='validation')[source]
Generates a JSON schema for a model class.
- Parameters:
by_alias (bool) – Whether to use attribute aliases or not.
ref_template (str) – The reference template.
schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications
mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- Return type:
- classmethod model_parametrized_name(params)[source]
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Parameters:
params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError – Raised when trying to generate concrete names for non-generic models.
- Return type:
- model_post_init(context, /)[source]
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- Parameters:
context (Any)
- Return type:
None
- classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Parameters:
force (bool) – Whether to force the rebuilding of the model schema, defaults to False.
raise_errors (bool) – Whether to raise errors, defaults to True.
_parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.
_types_namespace (MappingNamespace | None) – The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- Return type:
bool | None
- classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None, by_alias=None, by_name=None)[source]
Validate a pydantic model instance.
- Parameters:
obj (Any) – The object to validate.
strict (bool | None) – Whether to enforce types strictly.
from_attributes (bool | None) – Whether to extract data from object attributes.
context (Any | None) – Additional context to pass to the validator.
by_alias (bool | None) – Whether to use the field’s alias when validating against the provided input data.
by_name (bool | None) – Whether to use the field’s name when validating against the provided input data.
- Raises:
ValidationError – If the object could not be validated.
- Returns:
The validated model instance.
- Return type:
- classmethod model_validate_json(json_data, *, strict=None, context=None, by_alias=None, by_name=None)[source]
- !!! abstract “Usage Documentation”
[JSON Parsing](../concepts/json.md#json-parsing)
Validate the given JSON data against the Pydantic model.
- Parameters:
json_data (str | bytes | bytearray) – The JSON data to validate.
strict (bool | None) – Whether to enforce types strictly.
context (Any | None) – Extra variables to pass to the validator.
by_alias (bool | None) – Whether to use the field’s alias when validating against the provided input data.
by_name (bool | None) – Whether to use the field’s name when validating against the provided input data.
- Returns:
The validated Pydantic model.
- Raises:
ValidationError – If json_data is not a JSON string or the object could not be validated.
- Return type:
- classmethod model_validate_strings(obj, *, strict=None, context=None, by_alias=None, by_name=None)[source]
Validate the given object with string data against the Pydantic model.
- Parameters:
obj (Any) – The object containing string data to validate.
strict (bool | None) – Whether to enforce types strictly.
context (Any | None) – Extra variables to pass to the validator.
by_alias (bool | None) – Whether to use the field’s alias when validating against the provided input data.
by_name (bool | None) – Whether to use the field’s name when validating against the provided input data.
- Returns:
The validated Pydantic model.
- Return type:
- classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
- classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
- class langgraph_agent_toolkit.schema.MessageInput(*, type, content)[source][source]
Bases:
BaseModelInput for a message to be added to the chat history.
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- __init__(**data)[source]
Create a new model by parsing and validating input data from keyword arguments.
Raises [ValidationError][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.
self is explicitly positional-only to allow self as a field name.
- Parameters:
data (Any)
- Return type:
None
- copy(*, include=None, exclude=None, update=None, deep=False)[source]
Returns a copy of the model.
- !!! warning “Deprecated”
This method is now deprecated; use model_copy instead.
If you need include or exclude, use:
`python {test="skip" lint="skip"} data = self.model_dump(include=include, exclude=exclude, round_trip=True) data = {**data, **(update or {})} copied = self.model_validate(data) `- Parameters:
include (AbstractSetIntStr | MappingIntStrAny | None) – Optional set or mapping specifying which fields to include in the copied model.
exclude (AbstractSetIntStr | MappingIntStrAny | None) – Optional set or mapping specifying which fields to exclude in the copied model.
update (Dict[str, Any] | None) – Optional dictionary of field-value pairs to override field values in the copied model.
deep (bool) – If True, the values of fields that are Pydantic models will be deep-copied.
- Returns:
A copy of the model with included, excluded and updated fields as specified.
- Return type:
Self
- dict(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False)[source]
- Parameters:
include (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None)
exclude (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None)
by_alias (bool)
exclude_unset (bool)
exclude_defaults (bool)
exclude_none (bool)
- Return type:
- json(*, include=None, exclude=None, by_alias=False, exclude_unset=False, exclude_defaults=False, exclude_none=False, encoder=PydanticUndefined, models_as_dict=PydanticUndefined, **dumps_kwargs)[source]
- Parameters:
include (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None)
exclude (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None)
by_alias (bool)
exclude_unset (bool)
exclude_defaults (bool)
exclude_none (bool)
models_as_dict (bool)
dumps_kwargs (Any)
- Return type:
- model_computed_fields = {}
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- classmethod model_construct(_fields_set=None, **values)[source]
Creates a new instance of the Model class with validated data.
Creates a new model setting __dict__ and __pydantic_fields_set__ from trusted or pre-validated data. Default values are respected, but no other validation is performed.
- !!! note
model_construct() generally respects the model_config.extra setting on the provided model. That is, if model_config.extra == ‘allow’, then all extra passed values are added to the model instance’s __dict__ and __pydantic_extra__ fields. If model_config.extra == ‘ignore’ (the default), then all extra passed values are ignored. Because no validation is performed with a call to model_construct(), having model_config.extra == ‘forbid’ does not result in an error if extra values are passed, but they will be ignored.
- Parameters:
_fields_set (set[str] | None) – A set of field names that were originally explicitly set during instantiation. If provided, this is directly used for the [model_fields_set][pydantic.BaseModel.model_fields_set] attribute. Otherwise, the field names from the values argument will be used.
values (Any) – Trusted or pre-validated data dictionary.
- Returns:
A new instance of the Model class with validated data.
- Return type:
- model_copy(*, update=None, deep=False)[source]
- !!! abstract “Usage Documentation”
[model_copy](../concepts/serialization.md#model_copy)
Returns a copy of the model.
- !!! note
The underlying instance’s [__dict__][object.__dict__] attribute is copied. This might have unexpected side effects if you store anything in it, on top of the model fields (e.g. the value of [cached properties][functools.cached_property]).
- model_dump(*, mode='python', include=None, exclude=None, context=None, by_alias=None, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, fallback=None, serialize_as_any=False)[source]
- !!! abstract “Usage Documentation”
[model_dump](../concepts/serialization.md#modelmodel_dump)
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
- Parameters:
mode (Literal['json', 'python'] | str) – The mode in which to_python should run. If mode is ‘json’, the output will only contain JSON serializable types. If mode is ‘python’, the output may contain non-JSON-serializable Python objects.
include (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None) – A set of fields to include in the output.
exclude (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None) – A set of fields to exclude from the output.
context (Any | None) – Additional context to pass to the serializer.
by_alias (bool | None) – Whether to use the field’s alias in the dictionary key if defined.
exclude_unset (bool) – Whether to exclude fields that have not been explicitly set.
exclude_defaults (bool) – Whether to exclude fields that are set to their default value.
exclude_none (bool) – Whether to exclude fields that have a value of None.
round_trip (bool) – If True, dumped values should be valid as input for non-idempotent types such as Json[T].
warnings (bool | Literal['none', 'warn', 'error']) – How to handle serialization errors. False/”none” ignores them, True/”warn” logs errors, “error” raises a [PydanticSerializationError][pydantic_core.PydanticSerializationError].
fallback (Callable[[Any], Any] | None) – A function to call when an unknown value is encountered. If not provided, a [PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised.
serialize_as_any (bool) – Whether to serialize fields with duck-typing serialization behavior.
- Returns:
A dictionary representation of the model.
- Return type:
- model_dump_json(*, indent=None, include=None, exclude=None, context=None, by_alias=None, exclude_unset=False, exclude_defaults=False, exclude_none=False, round_trip=False, warnings=True, fallback=None, serialize_as_any=False)[source]
- !!! abstract “Usage Documentation”
[model_dump_json](../concepts/serialization.md#modelmodel_dump_json)
Generates a JSON representation of the model using Pydantic’s to_json method.
- Parameters:
indent (int | None) – Indentation to use in the JSON output. If None is passed, the output will be compact.
include (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None) – Field(s) to include in the JSON output.
exclude (set[int] | set[str] | Mapping[int, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | Mapping[str, set[int] | set[str] | Mapping[int, IncEx | bool] | Mapping[str, IncEx | bool] | bool] | None) – Field(s) to exclude from the JSON output.
context (Any | None) – Additional context to pass to the serializer.
by_alias (bool | None) – Whether to serialize using field aliases.
exclude_unset (bool) – Whether to exclude fields that have not been explicitly set.
exclude_defaults (bool) – Whether to exclude fields that are set to their default value.
exclude_none (bool) – Whether to exclude fields that have a value of None.
round_trip (bool) – If True, dumped values should be valid as input for non-idempotent types such as Json[T].
warnings (bool | Literal['none', 'warn', 'error']) – How to handle serialization errors. False/”none” ignores them, True/”warn” logs errors, “error” raises a [PydanticSerializationError][pydantic_core.PydanticSerializationError].
fallback (Callable[[Any], Any] | None) – A function to call when an unknown value is encountered. If not provided, a [PydanticSerializationError][pydantic_core.PydanticSerializationError] error is raised.
serialize_as_any (bool) – Whether to serialize fields with duck-typing serialization behavior.
- Returns:
A JSON string representation of the model.
- Return type:
- property model_extra: dict[str, Any] | None
Get extra fields set during validation.
- Returns:
A dictionary of extra fields, or None if config.extra is not set to “allow”.
- model_fields = {'content': FieldInfo(annotation=str, required=True, description='Content of the message.', examples=['Hello, world!']), 'type': FieldInfo(annotation=Literal['human', 'ai', 'tool', 'custom'], required=True, description='Role of the message.', examples=['human', 'ai', 'tool', 'custom'])}
- property model_fields_set: set[str]
Returns the set of fields that have been explicitly set on this model instance.
- Returns:
- A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
- classmethod model_json_schema(by_alias=True, ref_template=DEFAULT_REF_TEMPLATE, schema_generator=GenerateJsonSchema, mode='validation')[source]
Generates a JSON schema for a model class.
- Parameters:
by_alias (bool) – Whether to use attribute aliases or not.
ref_template (str) – The reference template.
schema_generator (type[GenerateJsonSchema]) – To override the logic used to generate the JSON schema, as a subclass of GenerateJsonSchema with your desired modifications
mode (Literal['validation', 'serialization']) – The mode in which to generate the schema.
- Returns:
The JSON schema for the given model class.
- Return type:
- classmethod model_parametrized_name(params)[source]
Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
- Parameters:
params (tuple[type[Any], ...]) – Tuple of types of the class. Given a generic class Model with 2 type variables and a concrete model Model[str, int], the value (str, int) would be passed to params.
- Returns:
String representing the new class where params are passed to cls as type variables.
- Raises:
TypeError – Raised when trying to generate concrete names for non-generic models.
- Return type:
- model_post_init(context, /)[source]
Override this method to perform additional initialization after __init__ and model_construct. This is useful if you want to do some validation that requires the entire model to be initialized.
- Parameters:
context (Any)
- Return type:
None
- classmethod model_rebuild(*, force=False, raise_errors=True, _parent_namespace_depth=2, _types_namespace=None)[source]
Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during the initial attempt to build the schema, and automatic rebuilding fails.
- Parameters:
force (bool) – Whether to force the rebuilding of the model schema, defaults to False.
raise_errors (bool) – Whether to raise errors, defaults to True.
_parent_namespace_depth (int) – The depth level of the parent namespace, defaults to 2.
_types_namespace (MappingNamespace | None) – The types namespace, defaults to None.
- Returns:
Returns None if the schema is already “complete” and rebuilding was not required. If rebuilding _was_ required, returns True if rebuilding was successful, otherwise False.
- Return type:
bool | None
- classmethod model_validate(obj, *, strict=None, from_attributes=None, context=None, by_alias=None, by_name=None)[source]
Validate a pydantic model instance.
- Parameters:
obj (Any) – The object to validate.
strict (bool | None) – Whether to enforce types strictly.
from_attributes (bool | None) – Whether to extract data from object attributes.
context (Any | None) – Additional context to pass to the validator.
by_alias (bool | None) – Whether to use the field’s alias when validating against the provided input data.
by_name (bool | None) – Whether to use the field’s name when validating against the provided input data.
- Raises:
ValidationError – If the object could not be validated.
- Returns:
The validated model instance.
- Return type:
- classmethod model_validate_json(json_data, *, strict=None, context=None, by_alias=None, by_name=None)[source]
- !!! abstract “Usage Documentation”
[JSON Parsing](../concepts/json.md#json-parsing)
Validate the given JSON data against the Pydantic model.
- Parameters:
json_data (str | bytes | bytearray) – The JSON data to validate.
strict (bool | None) – Whether to enforce types strictly.
context (Any | None) – Extra variables to pass to the validator.
by_alias (bool | None) – Whether to use the field’s alias when validating against the provided input data.
by_name (bool | None) – Whether to use the field’s name when validating against the provided input data.
- Returns:
The validated Pydantic model.
- Raises:
ValidationError – If json_data is not a JSON string or the object could not be validated.
- Return type:
- classmethod model_validate_strings(obj, *, strict=None, context=None, by_alias=None, by_name=None)[source]
Validate the given object with string data against the Pydantic model.
- Parameters:
obj (Any) – The object containing string data to validate.
strict (bool | None) – Whether to enforce types strictly.
context (Any | None) – Extra variables to pass to the validator.
by_alias (bool | None) – Whether to use the field’s alias when validating against the provided input data.
by_name (bool | None) – Whether to use the field’s name when validating against the provided input data.
- Returns:
The validated Pydantic model.
- Return type:
- classmethod parse_file(path, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
- classmethod parse_raw(b, *, content_type=None, encoding='utf8', proto=None, allow_pickle=False)[source]
Submodules
ModelProviderModelProvider.OPENAIModelProvider.AZURE_OPENAIModelProvider.ANTHROPICModelProvider.GOOGLE_VERTEXAIModelProvider.GOOGLE_GENAIModelProvider.BEDROCKModelProvider.DEEPSEEKModelProvider.OLLAMAModelProvider.FAKEModelProvider.encode()ModelProvider.replace()ModelProvider.split()ModelProvider.rsplit()ModelProvider.join()ModelProvider.capitalize()ModelProvider.casefold()ModelProvider.title()ModelProvider.center()ModelProvider.count()ModelProvider.expandtabs()ModelProvider.find()ModelProvider.partition()ModelProvider.index()ModelProvider.ljust()ModelProvider.lower()ModelProvider.lstrip()ModelProvider.rfind()ModelProvider.rindex()ModelProvider.rjust()ModelProvider.rstrip()ModelProvider.rpartition()ModelProvider.splitlines()ModelProvider.strip()ModelProvider.swapcase()ModelProvider.translate()ModelProvider.upper()ModelProvider.startswith()ModelProvider.endswith()ModelProvider.removeprefix()ModelProvider.removesuffix()ModelProvider.isascii()ModelProvider.islower()ModelProvider.isupper()ModelProvider.istitle()ModelProvider.isspace()ModelProvider.isdecimal()ModelProvider.isdigit()ModelProvider.isnumeric()ModelProvider.isalpha()ModelProvider.isalnum()ModelProvider.isidentifier()ModelProvider.isprintable()ModelProvider.zfill()ModelProvider.format()ModelProvider.format_map()ModelProvider.maketrans()ModelProvider.__init__()
AgentInfoAgentInfo.keyAgentInfo.descriptionAgentInfo.__init__()AgentInfo.construct()AgentInfo.copy()AgentInfo.dict()AgentInfo.from_orm()AgentInfo.json()AgentInfo.model_computed_fieldsAgentInfo.model_configAgentInfo.model_construct()AgentInfo.model_copy()AgentInfo.model_dump()AgentInfo.model_dump_json()AgentInfo.model_extraAgentInfo.model_fieldsAgentInfo.model_fields_setAgentInfo.model_json_schema()AgentInfo.model_parametrized_name()AgentInfo.model_post_init()AgentInfo.model_rebuild()AgentInfo.model_validate()AgentInfo.model_validate_json()AgentInfo.model_validate_strings()AgentInfo.parse_file()AgentInfo.parse_obj()AgentInfo.parse_raw()AgentInfo.schema()AgentInfo.schema_json()AgentInfo.update_forward_refs()AgentInfo.validate()
ServiceMetadataServiceMetadata.agentsServiceMetadata.default_agentServiceMetadata.__init__()ServiceMetadata.construct()ServiceMetadata.copy()ServiceMetadata.dict()ServiceMetadata.from_orm()ServiceMetadata.json()ServiceMetadata.model_computed_fieldsServiceMetadata.model_configServiceMetadata.model_construct()ServiceMetadata.model_copy()ServiceMetadata.model_dump()ServiceMetadata.model_dump_json()ServiceMetadata.model_extraServiceMetadata.model_fieldsServiceMetadata.model_fields_setServiceMetadata.model_json_schema()ServiceMetadata.model_parametrized_name()ServiceMetadata.model_post_init()ServiceMetadata.model_rebuild()ServiceMetadata.model_validate()ServiceMetadata.model_validate_json()ServiceMetadata.model_validate_strings()ServiceMetadata.parse_file()ServiceMetadata.parse_obj()ServiceMetadata.parse_raw()ServiceMetadata.schema()ServiceMetadata.schema_json()ServiceMetadata.update_forward_refs()ServiceMetadata.validate()
UserComplexInputUserComplexInput.messageUserComplexInput.model_configUserComplexInput.__init__()UserComplexInput.construct()UserComplexInput.copy()UserComplexInput.dict()UserComplexInput.from_orm()UserComplexInput.json()UserComplexInput.model_computed_fieldsUserComplexInput.model_construct()UserComplexInput.model_copy()UserComplexInput.model_dump()UserComplexInput.model_dump_json()UserComplexInput.model_extraUserComplexInput.model_fieldsUserComplexInput.model_fields_setUserComplexInput.model_json_schema()UserComplexInput.model_parametrized_name()UserComplexInput.model_post_init()UserComplexInput.model_rebuild()UserComplexInput.model_validate()UserComplexInput.model_validate_json()UserComplexInput.model_validate_strings()UserComplexInput.parse_file()UserComplexInput.parse_obj()UserComplexInput.parse_raw()UserComplexInput.schema()UserComplexInput.schema_json()UserComplexInput.update_forward_refs()UserComplexInput.validate()
UserInputUserInput.inputUserInput.model_nameUserInput.model_providerUserInput.model_config_keyUserInput.thread_idUserInput.user_idUserInput.agent_configUserInput.recursion_limitUserInput.__init__()UserInput.construct()UserInput.copy()UserInput.dict()UserInput.from_orm()UserInput.json()UserInput.model_computed_fieldsUserInput.model_configUserInput.model_construct()UserInput.model_copy()UserInput.model_dump()UserInput.model_dump_json()UserInput.model_extraUserInput.model_fieldsUserInput.model_fields_setUserInput.model_json_schema()UserInput.model_parametrized_name()UserInput.model_post_init()UserInput.model_rebuild()UserInput.model_validate()UserInput.model_validate_json()UserInput.model_validate_strings()UserInput.parse_file()UserInput.parse_obj()UserInput.parse_raw()UserInput.schema()UserInput.schema_json()UserInput.update_forward_refs()UserInput.validate()
StreamInputStreamInput.stream_tokensStreamInput.__init__()StreamInput.construct()StreamInput.copy()StreamInput.dict()StreamInput.from_orm()StreamInput.json()StreamInput.model_computed_fieldsStreamInput.model_configStreamInput.model_construct()StreamInput.model_copy()StreamInput.model_dump()StreamInput.model_dump_json()StreamInput.model_extraStreamInput.model_fieldsStreamInput.model_fields_setStreamInput.model_json_schema()StreamInput.model_parametrized_name()StreamInput.model_post_init()StreamInput.model_rebuild()StreamInput.model_validate()StreamInput.model_validate_json()StreamInput.model_validate_strings()StreamInput.parse_file()StreamInput.parse_obj()StreamInput.parse_raw()StreamInput.schema()StreamInput.schema_json()StreamInput.update_forward_refs()StreamInput.validate()StreamInput.inputStreamInput.model_nameStreamInput.model_providerStreamInput.model_config_keyStreamInput.thread_idStreamInput.user_idStreamInput.agent_configStreamInput.recursion_limit
ToolCallChatMessageChatMessage.typeChatMessage.contentChatMessage.tool_callsChatMessage.tool_call_idChatMessage.run_idChatMessage.response_metadataChatMessage.custom_dataChatMessage.pretty_repr()ChatMessage.pretty_print()ChatMessage.__init__()ChatMessage.construct()ChatMessage.copy()ChatMessage.dict()ChatMessage.from_orm()ChatMessage.json()ChatMessage.model_computed_fieldsChatMessage.model_configChatMessage.model_construct()ChatMessage.model_copy()ChatMessage.model_dump()ChatMessage.model_dump_json()ChatMessage.model_extraChatMessage.model_fieldsChatMessage.model_fields_setChatMessage.model_json_schema()ChatMessage.model_parametrized_name()ChatMessage.model_post_init()ChatMessage.model_rebuild()ChatMessage.model_validate()ChatMessage.model_validate_json()ChatMessage.model_validate_strings()ChatMessage.parse_file()ChatMessage.parse_obj()ChatMessage.parse_raw()ChatMessage.schema()ChatMessage.schema_json()ChatMessage.update_forward_refs()ChatMessage.validate()
FeedbackFeedback.run_idFeedback.keyFeedback.scoreFeedback.user_idFeedback.kwargsFeedback.__init__()Feedback.construct()Feedback.copy()Feedback.dict()Feedback.from_orm()Feedback.json()Feedback.model_computed_fieldsFeedback.model_configFeedback.model_construct()Feedback.model_copy()Feedback.model_dump()Feedback.model_dump_json()Feedback.model_extraFeedback.model_fieldsFeedback.model_fields_setFeedback.model_json_schema()Feedback.model_parametrized_name()Feedback.model_post_init()Feedback.model_rebuild()Feedback.model_validate()Feedback.model_validate_json()Feedback.model_validate_strings()Feedback.parse_file()Feedback.parse_obj()Feedback.parse_raw()Feedback.schema()Feedback.schema_json()Feedback.update_forward_refs()Feedback.validate()
FeedbackResponseFeedbackResponse.statusFeedbackResponse.run_idFeedbackResponse.messageFeedbackResponse.__init__()FeedbackResponse.construct()FeedbackResponse.copy()FeedbackResponse.dict()FeedbackResponse.from_orm()FeedbackResponse.json()FeedbackResponse.model_computed_fieldsFeedbackResponse.model_configFeedbackResponse.model_construct()FeedbackResponse.model_copy()FeedbackResponse.model_dump()FeedbackResponse.model_dump_json()FeedbackResponse.model_extraFeedbackResponse.model_fieldsFeedbackResponse.model_fields_setFeedbackResponse.model_json_schema()FeedbackResponse.model_parametrized_name()FeedbackResponse.model_post_init()FeedbackResponse.model_rebuild()FeedbackResponse.model_validate()FeedbackResponse.model_validate_json()FeedbackResponse.model_validate_strings()FeedbackResponse.parse_file()FeedbackResponse.parse_obj()FeedbackResponse.parse_raw()FeedbackResponse.schema()FeedbackResponse.schema_json()FeedbackResponse.update_forward_refs()FeedbackResponse.validate()
MessageInputMessageInput.typeMessageInput.contentMessageInput.__init__()MessageInput.construct()MessageInput.copy()MessageInput.dict()MessageInput.from_orm()MessageInput.json()MessageInput.model_computed_fieldsMessageInput.model_configMessageInput.model_construct()MessageInput.model_copy()MessageInput.model_dump()MessageInput.model_dump_json()MessageInput.model_extraMessageInput.model_fieldsMessageInput.model_fields_setMessageInput.model_json_schema()MessageInput.model_parametrized_name()MessageInput.model_post_init()MessageInput.model_rebuild()MessageInput.model_validate()MessageInput.model_validate_json()MessageInput.model_validate_strings()MessageInput.parse_file()MessageInput.parse_obj()MessageInput.parse_raw()MessageInput.schema()MessageInput.schema_json()MessageInput.update_forward_refs()MessageInput.validate()
AddMessagesInputAddMessagesInput.thread_idAddMessagesInput.user_idAddMessagesInput.messagesAddMessagesInput.__init__()AddMessagesInput.construct()AddMessagesInput.copy()AddMessagesInput.dict()AddMessagesInput.from_orm()AddMessagesInput.json()AddMessagesInput.model_computed_fieldsAddMessagesInput.model_configAddMessagesInput.model_construct()AddMessagesInput.model_copy()AddMessagesInput.model_dump()AddMessagesInput.model_dump_json()AddMessagesInput.model_extraAddMessagesInput.model_fieldsAddMessagesInput.model_fields_setAddMessagesInput.model_json_schema()AddMessagesInput.model_parametrized_name()AddMessagesInput.model_post_init()AddMessagesInput.model_rebuild()AddMessagesInput.model_validate()AddMessagesInput.model_validate_json()AddMessagesInput.model_validate_strings()AddMessagesInput.parse_file()AddMessagesInput.parse_obj()AddMessagesInput.parse_raw()AddMessagesInput.schema()AddMessagesInput.schema_json()AddMessagesInput.update_forward_refs()AddMessagesInput.validate()
AddMessagesResponseAddMessagesResponse.statusAddMessagesResponse.thread_idAddMessagesResponse.user_idAddMessagesResponse.messageAddMessagesResponse.__init__()AddMessagesResponse.construct()AddMessagesResponse.copy()AddMessagesResponse.dict()AddMessagesResponse.from_orm()AddMessagesResponse.json()AddMessagesResponse.model_computed_fieldsAddMessagesResponse.model_configAddMessagesResponse.model_construct()AddMessagesResponse.model_copy()AddMessagesResponse.model_dump()AddMessagesResponse.model_dump_json()AddMessagesResponse.model_extraAddMessagesResponse.model_fieldsAddMessagesResponse.model_fields_setAddMessagesResponse.model_json_schema()AddMessagesResponse.model_parametrized_name()AddMessagesResponse.model_post_init()AddMessagesResponse.model_rebuild()AddMessagesResponse.model_validate()AddMessagesResponse.model_validate_json()AddMessagesResponse.model_validate_strings()AddMessagesResponse.parse_file()AddMessagesResponse.parse_obj()AddMessagesResponse.parse_raw()AddMessagesResponse.schema()AddMessagesResponse.schema_json()AddMessagesResponse.update_forward_refs()AddMessagesResponse.validate()
ClearHistoryInputClearHistoryInput.thread_idClearHistoryInput.user_idClearHistoryInput.__init__()ClearHistoryInput.construct()ClearHistoryInput.copy()ClearHistoryInput.dict()ClearHistoryInput.from_orm()ClearHistoryInput.json()ClearHistoryInput.model_computed_fieldsClearHistoryInput.model_configClearHistoryInput.model_construct()ClearHistoryInput.model_copy()ClearHistoryInput.model_dump()ClearHistoryInput.model_dump_json()ClearHistoryInput.model_extraClearHistoryInput.model_fieldsClearHistoryInput.model_fields_setClearHistoryInput.model_json_schema()ClearHistoryInput.model_parametrized_name()ClearHistoryInput.model_post_init()ClearHistoryInput.model_rebuild()ClearHistoryInput.model_validate()ClearHistoryInput.model_validate_json()ClearHistoryInput.model_validate_strings()ClearHistoryInput.parse_file()ClearHistoryInput.parse_obj()ClearHistoryInput.parse_raw()ClearHistoryInput.schema()ClearHistoryInput.schema_json()ClearHistoryInput.update_forward_refs()ClearHistoryInput.validate()
ClearHistoryResponseClearHistoryResponse.statusClearHistoryResponse.thread_idClearHistoryResponse.user_idClearHistoryResponse.messageClearHistoryResponse.__init__()ClearHistoryResponse.construct()ClearHistoryResponse.copy()ClearHistoryResponse.dict()ClearHistoryResponse.from_orm()ClearHistoryResponse.json()ClearHistoryResponse.model_computed_fieldsClearHistoryResponse.model_configClearHistoryResponse.model_construct()ClearHistoryResponse.model_copy()ClearHistoryResponse.model_dump()ClearHistoryResponse.model_dump_json()ClearHistoryResponse.model_extraClearHistoryResponse.model_fieldsClearHistoryResponse.model_fields_setClearHistoryResponse.model_json_schema()ClearHistoryResponse.model_parametrized_name()ClearHistoryResponse.model_post_init()ClearHistoryResponse.model_rebuild()ClearHistoryResponse.model_validate()ClearHistoryResponse.model_validate_json()ClearHistoryResponse.model_validate_strings()ClearHistoryResponse.parse_file()ClearHistoryResponse.parse_obj()ClearHistoryResponse.parse_raw()ClearHistoryResponse.schema()ClearHistoryResponse.schema_json()ClearHistoryResponse.update_forward_refs()ClearHistoryResponse.validate()
ChatHistoryInputChatHistoryInput.thread_idChatHistoryInput.user_idChatHistoryInput.__init__()ChatHistoryInput.construct()ChatHistoryInput.copy()ChatHistoryInput.dict()ChatHistoryInput.from_orm()ChatHistoryInput.json()ChatHistoryInput.model_computed_fieldsChatHistoryInput.model_configChatHistoryInput.model_construct()ChatHistoryInput.model_copy()ChatHistoryInput.model_dump()ChatHistoryInput.model_dump_json()ChatHistoryInput.model_extraChatHistoryInput.model_fieldsChatHistoryInput.model_fields_setChatHistoryInput.model_json_schema()ChatHistoryInput.model_parametrized_name()ChatHistoryInput.model_post_init()ChatHistoryInput.model_rebuild()ChatHistoryInput.model_validate()ChatHistoryInput.model_validate_json()ChatHistoryInput.model_validate_strings()ChatHistoryInput.parse_file()ChatHistoryInput.parse_obj()ChatHistoryInput.parse_raw()ChatHistoryInput.schema()ChatHistoryInput.schema_json()ChatHistoryInput.update_forward_refs()ChatHistoryInput.validate()
ChatHistoryChatHistory.messagesChatHistory.__init__()ChatHistory.construct()ChatHistory.copy()ChatHistory.dict()ChatHistory.from_orm()ChatHistory.json()ChatHistory.model_computed_fieldsChatHistory.model_configChatHistory.model_construct()ChatHistory.model_copy()ChatHistory.model_dump()ChatHistory.model_dump_json()ChatHistory.model_extraChatHistory.model_fieldsChatHistory.model_fields_setChatHistory.model_json_schema()ChatHistory.model_parametrized_name()ChatHistory.model_post_init()ChatHistory.model_rebuild()ChatHistory.model_validate()ChatHistory.model_validate_json()ChatHistory.model_validate_strings()ChatHistory.parse_file()ChatHistory.parse_obj()ChatHistory.parse_raw()ChatHistory.schema()ChatHistory.schema_json()ChatHistory.update_forward_refs()ChatHistory.validate()
HealthCheckHealthCheck.__init__()HealthCheck.construct()HealthCheck.copy()HealthCheck.dict()HealthCheck.from_orm()HealthCheck.json()HealthCheck.model_computed_fieldsHealthCheck.model_configHealthCheck.model_construct()HealthCheck.model_copy()HealthCheck.model_dump()HealthCheck.model_dump_json()HealthCheck.model_extraHealthCheck.model_fieldsHealthCheck.model_fields_setHealthCheck.model_json_schema()HealthCheck.model_parametrized_name()HealthCheck.model_post_init()HealthCheck.model_rebuild()HealthCheck.model_validate()HealthCheck.model_validate_json()HealthCheck.model_validate_strings()HealthCheck.parse_file()HealthCheck.parse_obj()HealthCheck.parse_raw()HealthCheck.schema()HealthCheck.schema_json()HealthCheck.update_forward_refs()HealthCheck.validate()HealthCheck.contentHealthCheck.version
TaskDataTaskData.nameTaskData.run_idTaskData.stateTaskData.resultTaskData.dataTaskData.completed()TaskData.completed_with_error()TaskData.__init__()TaskData.construct()TaskData.copy()TaskData.dict()TaskData.from_orm()TaskData.json()TaskData.model_computed_fieldsTaskData.model_configTaskData.model_construct()TaskData.model_copy()TaskData.model_dump()TaskData.model_dump_json()TaskData.model_extraTaskData.model_fieldsTaskData.model_fields_setTaskData.model_json_schema()TaskData.model_parametrized_name()TaskData.model_post_init()TaskData.model_rebuild()TaskData.model_validate()TaskData.model_validate_json()TaskData.model_validate_strings()TaskData.parse_file()TaskData.parse_obj()TaskData.parse_raw()TaskData.schema()TaskData.schema_json()TaskData.update_forward_refs()TaskData.validate()
TaskDataStatus